Химическая формула золота. Золото – химический элемент: полная характеристика Сообщение по химии золото

💖 Нравится? Поделись с друзьями ссылкой

ЗОЛОТО (химический элемент) ЗОЛОТО (химический элемент)

ЗО́ЛОТО (лат. Aurum) , Au (читается «аурум»), химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197 Au. Конфигурация внешней и предвнешней электронных оболочек 5s 2 p 6 d 10 6s 1 . Расположено в IВ группе и 6-м периоде периодической системы, относится к благородным металлам. Степени окисления 0, +1, +3, +5 (валентности от I, III, V).
Металлический радиус атома золота 0,137 нм, радиус иона Au + - 0,151 нм для координационного числа 6, иона Au 3+ - 0,084 нм и 0,099 нм для координационных чисел 4 и 6. Энергии ионизации Au 0 - Au + - Au 2+ - Au 3+ соответственно равны 9,23, 20,5 и 30,47 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,4.
Нахождение в природе
Содержание в земной коре 4,3·10 –7 % по массе, в воде морей и океанов менее 5·10 –6 % мг/л. Относится к рассеянным элементам. Известно более 20 минералов, из которых главный - самородное золото (электрум, медистое, палладиевое, висмутовое золото). Самородки большого размера встречаются крайне редко и, как правило, имеют именные названия. Химические соединения золота в природе редки, в основном это теллуриды - калеверит AuTe 2 , креннерит (Au,Ag)Te 2 и другие. Золото может присутствовать в виде примеси в различных сульфидных минералах: пирите (см. ПИРИТ) , халькопирите (см. ХАЛЬКОПИРИТ) , сфалерите (см. СФАЛЕРИТ) и других.
Современные методы химического анализа позволяют обнаружить присутствие ничтожных количеств Au в организмах растений и животных, в винах и коньяках, в минеральных водах и в морской воде.
История открытия
Золото было известно человечеству с древнейших времен. Возможно, оно явилось первым металлом, с которым познакомился человек. Имеются данные о добыче золота и изготовлении изделий из него в Древнем Египте (4100-3900 годы до н. э.), Индии и Индокитае (2000-1500 годы до н. э.), где из него изготавливали деньги, дорогие украшения, произведений культа и искусства.
Получение
Источники золота при его промышленном получении - руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств.
Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой.
Другим способом золото извлекают из руды, обрабатывая ее жидкой ртутью и получая жидкий сплав - амальгаму. Далее амальгаму нагревают, ртуть испаряется, а золото остается. Применяют и цианидный способ извлечения золота из руд. В этом случае золотоносную руду обрабатывают раствором цианида натрия NaCN. В присутствии кислорода воздуха золото переходит в раствор:
4Au + O 2 + 8NaCN + 2H 2 O = 4Na + 4NaOH
Далее полученный раствор комплекса золота обрабатывают цинковой пылью:
2Na + Zn = Na 2 + NO +H 2 O
с последующим избирательным осаждением золота из раствора, например, с помощью FeSO 4 .
Физические и химические свойства
Золото - желтый металл с кубической гранецентрированной решеткой (a = 0,40786 нм). Температура плавления 1064,4 °C, температура кипения 2880 °C, плотность 19,32 кг/дм 3 . Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м 2 . Толщина самых тонких листочков золота 0,1 мкм. Из золота можно вытянуть тончайшие нити.
Золото устойчиво на воздухе и в воде. С кислородом (см. КИСЛОРОД) , азотом (см. АЗОТ) , водородом (см. ВОДОРОД) , фосфором (см. ФОСФОР) , сурьмой (см. СУРЬМА) и углеродом (см. УГЛЕРОД) непосредственно не взаимодействует. Антимонид AuSb 2 и фосфид золота Au 2 P 3 получают косвенными путями.
В ряду стандартных потенциалов золото расположено правее водорода, поэтому с неокисляющими кислотами в реакции не вступает. Растворяется в горячей селеновой кислоте:
2Au + 6H 2 SeO 4 = Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O,
в концентрированной соляной кислоте при пропускании через раствор хлора:
2Au + 3Cl 2 + 2HCl = 2H
При аккуратном упаривании получаемого раствора можно получить желтые кристаллы золотохлористоводородной кислоты HAuCl 4 ·3H 2 O.
С галогенами (см. ГАЛОГЕНЫ) без нагревания в отсутствие влаги золото не реагирует. При нагревании порошка золота с галогенами или с дифторидом ксенона образуются галогениды золота:
2Au + 3Cl 2 = 2AuCl 3 ,
2Au + 3XeF 2 = 2AuF 3 + 3Xe
В воде растворимы только AuCl 3 и AuBr 3 , состоящие из димерных молекул:
Термическим разложением гексафторауратов (V), например, O 2 + – получены фториды золота AuF 5 и AuF 7 . Их также можно получить, окисляя золото или его трифторид с помощью KrF 2 и XeF 6 .
Моногалогениды золота AuCl, AuBr и AuI образуются при нагревании в вакууме соответствующих высших галогенидов. При нагревании они или разлагаются:
2AuCl = 2Au + Cl 2
или диспропорционируют:
3AuBr = AuBr 3 + 2Au.
Соединения золота неустойчивы и в водных растворах гидролизуются, легко восстанавливаясь до металла.
Гидроксид золота (III) Au(OH) 3 образуется при добавлении щелочи или Mg(OH) 2 к раствору H:
H + 2Mg(OH) 2 = Au(OH) 3 Ї + 2MgCl 2 + H 2 O
При нагревании Au(OH) 3 легко дегидратируется, образуя оксид золота (III):
2Au(OH) 3 = Au 2 O 3 + 3H 2 O
Гидроксид золота (III) проявляет амфотерные свойства, реагируя с растворами кислот и щелочей:
Au(OH) 3 + 4HCl = H + 3H 2 O,
Au(OH) 3 + NaOH = Na
Другие кислородные соединения золота неустойчивы и легко образуют взрывчатые смеси. Соединение оксида золота (III) с аммиаком Au 2 O 3 ·4NH 3 - «гремучее золото», взрывается при нагревании.
При восстановлении золота из разбавленных растворов его солей, а также при электрическом распылении золота в воде образуется стойкий коллоидный раствор золота:
2AuCl 3 + 3SnCl 2 = 3SnCl 4 +2Au
Окраска коллоидных растворов золота зависит от степени дисперсности частиц золота, а интенсивность от их концентрации. Частицы золота в растворе всегда отрицательно заряжены.
Применение
Золото и его сплавы используют для изготовления ювелирных изделий, монет, медалей, зубных протезов, деталей химической аппаратуры, электрических контактов и проводов, изделий микроэлектроники, для плакирования труб в химической промышленности, в производстве припоев, катализаторов, часов, для окрашивания стекол, изготовления перьев для авторучек, нанесения покрытий на металлические поверхности. Обычно золото используют в сплаве с серебром или палладием (белое золото; также называют сплав золота с платиной и другими металлами). Содержание золота в сплаве обозначают государственным клеймом. Золото 583 пробы является сплавом с 58,3% золота по массе. См также Золото (в экономике) (см. ЗОЛОТО (в экономике)) .
Физиологическое действие
Некоторые соединения золота токсичны, накапливаются в почках, печени, селезенке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении.


Энциклопедический словарь . 2009 .

Смотреть что такое "ЗОЛОТО (химический элемент)" в других словарях:

    Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в… … Википедия

    ПАЛЛАДИЙ (лат. Palladium, по названию одного из крупнейших астероидов Паллада), Pd (читается «палладий»), химический элемент с атомным номером 46, атомная масса 106,42. Природный палладий состоит из шести стабильных изотопов 102Pd (1,00%), 104Pd… … Энциклопедический словарь

    - (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… …

    - (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Platine фр., Platina или um англ., Platin нем.; Pt = 194,83, если О = 16 по данным К. Зейберта). П. обыкновенно сопровождают другие металлы, и те из этих металлов, которые примыкают к ней по своим химическим свойствам, получили название… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    U (Uran, uranium; при О = 16 атомн. вес U = 240) элемент с наибольшим атомным весом; все элементы, по атомному весу, помещаются между водородом и ураном. Это тяжелейший член металлической подгруппы VI группы периодической системы (см. Хром,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Bromum; хим. форм. Br, атомный вес 80) неметаллический элемент, из группы галоидов, открытый в 1826 г. французским химиком Баларом в маточных растворах солей морской воды; название свое Б. получил от греческого слова Βρωμος зловоние.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона


Выполнил: студент группы СП – 00 – Д1 Иванов Сергей Тихонович

Проверил: Егоров С.Н.

Волгодонск

В связи с быстрыми темпами развития техники связи, электронной, авиационной, космической и других отраслей промышленности значительно вырос интерес к золоту. В настоящее время разработано большое количество новых сплавов золота, а так же технологические процессы нанесения покрытия золотом и получение многослойных материалов.

Распространенность золота в природе

В земной коре содержится золота в 20 раз меньше, чем серебра, и в 200 раз меньше, чем ртути. Неравномерное распределение золота в различных частях земной коры затрудняет изучение его геохимических особенностей. В морях и океанах содержится около 10 млрд. т золота. Примерно столько же содержится золота в речных и подземных водах.

Повышенное содержание золота обнаруживают в водах источников и рек, протекающих в золотоносных районах. В природе золото находится главным образом в самородном виде и представляет собой минерал, являющийся твердым раствором серебра в золоте, содержащим до 43% Ag, с примесями меди, железа, свинца, реже висмута, ртути, платины, марганца и других элементов. Кроме того золото встречается в виде природных амальгам, а также химических соединений – соленидов и теллуридов. По размеру частиц самородное золото делится на тонкодисперсное (1 – 5 мкм), пылевидное (5 – 50 мкм), мелкое (0,05 – 2 мм) и крупное (более 2 мм). Частицы массой более 5 г относятся к самородкам. Крупнейшие самородки – ""Плита Холтермана"" (285 кг) и ""Желанный Незнакомец"" (71 кг) найдены в Австралии. Находки самородков известны во многих районах Урала, Сибири, Якутии и Колымы. Самородное золото концентрируется в гидротермальных месторождениях.

Месторождения золота делятся на коренные и рассыпные. Месторождения золота формировались в разные геологические эпохи на разных глубинах – от десятков метров до 4 – 5 км от поверхности земли. Коренные месторождения представлены жилами, системами жил, залежами и зонами прожилково - вкрапленных руд протяженностью от десятков до тысяч метров. В течение длительного периода истории земли горы разрушались и вода уносила все, что не растворялось в реках. Одновременно отделялись тяжелые минералы от легких и скапливались в местах, где скорость течения мала. Так образовались россыпные месторождения с концентрацией относительно крупного золота. Как правило, промышленные россыпи образуются относительно недалеко от коренных месторождений. Определенная часть микроскопических частиц золота остается в россыпях, однако вследствие невозможности его извлечения оно практического значения не имеет. Часть микроскопических и коллоидных частиц золота уносится водными истоками в моря, океаны и озера, где оно рассеянно в виде тончайших суспензий или находится в илистых осадках. Таким образом в результате действия эрозионных процессов большая часть золота безвозвратно утрачивается.

Химические свойства
Несмотря на то что золото в периодической системе Д. И. Менделеева находится в одной группе с серебром и медью, его химические свойства гораздо ближе к химическим свойствам металлов платиновой группы. Электродный потенциал пары Au – Au (111) равен – 1,5 В. Вследствие такого высокого значения на золото не действуют разбавленные и концентрированные HCI, HNO, HSO. Однако в HCI оно растворяется в присутствии таких окислителей, как двуокись магния, хлористое железо и медь, а также под большим давлением и при высокой температуре в присутствии кислорода. Золото легко растворяется также в смеси HCI и HNO (царская водка). В химическом отношении золото - малоактивный металл. На воздухе оно не изменяется, даже при сильном нагревании. Золото легко растворяется в хлорной воде и в аэрируемых растворах цианидов щелочных металлов. Ртуть также растворяет золото, образуя амальгаму, которая при содержании более 15% золота становится твердой. Известны два ряда соединений золота, отвечающие степеням окисленности +1 и +3. Так, золото образует два оксида – оксид золота (1), или закись золота , AuO и оксид золота (111), или окись золота , AuO. Более устойчивы соединения, в которых золото имеет степень окисленности +3. Соединения золота легко восстанавливаются до металла. Восстановителями могут быть водород под большим давлением, многие металлы, стоящие в ряду напряжений до золота, перекись водорода, двух хлористое олово, сернокислое железо, треххлористый титан, окись свинца, двуокись марганца, перекиси щелочных и щелочноземельных металлов. Для восстановления золота используют также различные органические вещества: муравьиную и щавелевую кислоты, гидрохинон, гидразин, метол, ацетилен и др. Для золота характерна способность к образованию комплексов с кислородом и серосодержащими лигандами, аммиаком и аминами вследствие высокой энергии образования соответствующих ионов. Чаще всего встречаются соединения одновалентного и трехвалентного золота. Часто их рассматривают как сложные молекулы, состоящие из равного числа атомов Au (1) и Au (3). Трехвалентное золото – очень сильный окислитель, оно образует много устойчивых соединений. Золото соединяется с хлором, фтором, йодом, кислородом, серой, теллуром и селеном.
Физико-механические свойства

Золото давно является объектом научных исследований и относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Постоянная решетки а составляет 4.07855 А при 25 С, что соответствует значению 4.0724 А при 20 С. Влияние давления на плотность золота показано на рисунке:

0 100 200 300 400

Большие расхождения существуют в результате измерения температуры плавления золота – от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота l при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 – 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Для чистого золота характерны низкое значение предела прочности s - порядка 13 – 13.3 кгс/мм – и высокое значение относительного удлинения – порядка 50% - в отожженном состоянии. Предел текучести s также очень низок, он равен 0.35 кгс/мм. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.

Применение золота в науке и технике

Тысячелетиями золото использовалось для производства ювелирных украшений и монет, а применение золота для зубопротезирования известно еще древним египтянам. Применение золота в стекольной промышленности известно с конца XVII в. Золотую фольгу, а позднее гальванопокрытия золотом широко применяли для золочения куполов церковных храмов. Лишь последние 40 – 45 лет можно отнести к периоду чисто технического применения золота. Золото обладает уникальным комплексом свойств, которого не имеет ни какой другой металл. Оно обладает самой высокой стойкостью к воздействию агрессивных сред, по электро – и теплопроводности уступает лишь серебру и меди, ядро золота имеет большое сечение захвата нейтронов, способность золота к отражению инфракрасных лучей близка к 100%, в сплавах оно обладает каталитическими свойствами. Золото очень технологично, из него легко изготавливают сверхтонкую фольгу и микронную проволоку. Покрытия золотом легко наносят на металлы и керамику. Золото хорошо паяется и сваривается под давлением. Такая совокупность полезных свойств послужила причиной широкого использования золота в важнейших современных отраслях техники: электронике, технике связи, космической и авиационной технике, химии.

Следует отметить, что в электронике на 90% золото используют в виде покрытий. Электроника и связанные с ней отрасли машиностроения являются основными потребителями золота в технике. В этой области золото широко используют для соединения интегральных схем сваркой давлением или ультразвуковой сваркой, контактов штепсельных разъемов, в качестве тонких проволочных проводников, для пайки элементов транзисторов и других целей. В последнем случае особенно важно то, что золото образует легкоплавкие эвтектики с индием, галлием, кремнием и другими элементами, которые обладают проводимостью определенного типа. Помимо технологических усовершенствований в электронике, для ряда деталей и узлов вместо золота стали использовать палладий, покрытия оловом, сплавами олова со свинцом и сплавом 65% Sn + 35% Ni с золотым подслоем. Сплав олова с никелем обладает высокой износостойкостью, коррозионной стойкостью, приемлемой величиной контактного сопротивления и электропроводностью. Несмотря на то что в настоящее время расход золота в электронике непрерывно возрастает, считается, что он мог быть на 30% выше, если бы не меры, направленные на экономию золота.

В микроэлектронике широко применяют пасты на основе на основе золота с различным электросопротивлением. Широкое использование золота и его сплавов для контактов слаботочной аппаратуры обусловлено его высокими электрическими и коррозионными свойствами. Серебро, платина и их сплавы при использовании в качестве контактов, коммутирующих микротоки при микронапряжениях, дают гораздо худшие результаты. Серебро быстро тускнеет в атмосфере, загрязненной сероводородом, а платина полимеризует органические соединения. Золото свободно от этих недостатков, и контакты из его сплавов обеспечивают высокую надежность и длительный срок службы. Золотые припои с низким давлением пара используют для пайки вакуумноплотных швов деталей электронных ламп, а также для пайки узлов в аэрокосмической промышленности.

В измерительной технике для контроля температуры и особенно для измерений низких температур используют сплавы золота с кобальтом или хромом. В химической промышленности золото главным образом используют для плакирования стальных труб, предназначенных для транспортировки агрессивных веществ.

Золотые сплавы применяют в производстве часовых корпусов и перьев для авторучек. В медицине используют не только зубопротезные золотые сплавы, но и медицинские препараты, содержащие соли золота, для различных целей, например при лечении туберкулеза. Радиоактивное золото используют при лечении злокачественных опухолей. В научных исследованиях золото используют для захвата медленных нейтронов. С помощью радиоактивных изотопов золота изучают диффузионные процессы в металлах и сплавах.

Золото применяют для металлизации оконных стекол зданий. В жаркие летние месяцы через оконные стекла зданий проходит значительное количество инфракрасного излучения. В этих обстоятельствах тонкая пленка (0.13 мкм) отражает инфракрасное излучение и в помещении становится значительно прохладнее. Если через такое стекло пропустить ток, то оно обретет противотуманные свойства. Покрытые золотом смотровые стекла судов, электровозов и т.д. эффективны в любое время года.

Валютно – финансовое значение золота

До появления монет средствами платежа служили слитки или кольца из золота, серебра или меди, что вило к большим неудобствам в торговых расчетах. Слитки приходилось взвешивать, делить на более мелкие. Это послужило решающей предпосылкой для перехода к чеканке монет.

Большинство исследователей считают, что первая золотая монета была отчеканена в VII в. до н.э. в Лидии из сплава, содержащего 73% Au и 27% Ag. Чуть позже стали чеканить золотые монеты и в древней Греции. В странах Средиземноморья и на Ближнем Востоке наравне с золотыми имели обращение серебрянные монеты, что указывает на раннее происхождение биметаллизма. Соотношение ценности между золотом и серебром было различным в зависимости от эпохи и наличия запасов этих металлов. По свидетельству Плиния, первую золотую монету римляне выбили в III в. до н.э. Само слово ""монета"" произошло от названия римского храма Юнона – Монета, где был организован первый римский монетный двор.

В начале XIX в. намечается переход к золотому стандарту в Великобритании, законодательно – в конце XVIII в., фактически – в 1823 г. Во Франции, Германии, России, Японии и США переход к монометаллической денежной системе завершился в последней четверти XIX в. Высшей формой золотого стандарта был золотомонетный стандарт, характеризующийся свободной циркуляцией во внутреннем обращении золотых монет и их свободной чеканкой, неограниченным разменом на бумажные деньги по твердым паритетам, свободным ввозом и вывозом золота за границу.

Свободная циркуляция золота в наибольшей степени отвечала требованиям системы свободного предпринимательства, служила развитию международных денежных связей, постепенно оформившихся в валютную систему.

Громоздкость золотых монет и связанные с этим неудобства и издержки при транспортировке, постепенное истирание монет, издержки в обращении явились объективными причинами перехода на бумажные деньги.

Высокие цены на золото стимулируют разработку его заменителей, но совершенно очевидно, что универсального заменителя золоту найти не удается. Можно только говорить о замене золота более дешевым материалом в отдельных устройствах, где условия работы позволяют это сделать. Если принять во внимание рост космических программ, то можно ожидать значительного роста технического применения золота. Несомненно, что если бы не специфические монетарные функции золота, этот металл гораздо более широко применялся бы в технике уже в настоящее время.

Золото - это самый популярный драгоценный металл в мире. Всем нравится его яркость и блеск. Практически в каждой семье есть хоть какое-то украшение из этого металла. Формула золота волновала умы множества алхимиков и ученых. Ему посвящены сотни научных трудов. При этом не все люди знают, какие свойства золота помогли стать ему таким популярным. С каждым днем цена металла только растет. Так, на сегодняшний день стоимость грамма золота 999 пробы в Сбербанке России составляет 2536 рублей.

Общие сведения

Несмотря на то что золото - металл, который известен всему миру на протяжении тысяч лет, не все знают о том, что в природе оно встречается в различных видах и в разных местах. Размер его частиц может составлять от микрона до десятков сантиметров. Из-за различных примесей этот благородный металл не всегда имеет традиционный желтый цвет. Добыча золота - очень прибыльный бизнес, в основе которого лежат различные свойства этого природного материала. Именно знания о металле, накопленные веками, позволяют удовлетворять потребность в нем.

В химии золото (лат. Aurum) обозначается символом Au. В переводе на русский Aurum означает «желтый». Этот элемент относится к 1 группе периодической системы Менделеева. Его атомный номер - 79. Формула золота зависит от компонентов, входящих в сплав. В составе природного вещества присутствует изотоп 197 Au. Металл имеет кубическую гранецентрированную кристаллическую решетку типа Cu.

В природе существует 15 минералов, в которых содержится этот химический элемент. К ним относятся: самородное золото с примесями меди или серебра, порпесит, электрум, осмистый иридий (ауросмирид), калавертин, креннерит, летцит, сильванит, мутманит, нагиагит, монтбрейит и проч. Существуют и другие соединения, содержащие этот металл. Это платинистое, родистое, иридистое, медистое золото. В горных породах данное вещество чаще всего рассеяно на атомарном уровне. В месторождениях золото нередко заключено в сульфиды и арсениды.

Ранее считалось, что этот элемент очень инертен, но многочисленные эксперименты с ним доказали, что это не совсем так. Такое заблуждение основывалось на том основании, что золото никак не изменяется при воздействии на него таких агрессивных агентов, как кислород и сера. Также оно не вступает в реакцию с такими химическими элементами, как азот, водород, фосфор, углерод. На него не действуют большинство минеральных кислот и щелочи.

Валентность этого химического элемента в различных соединениях обычно составляет +1 или +3. Галогены при нагревании образуют с золотом следующие соединения: AuCl3, AuF3, AuI, AuBr3. При комнатной температуре оно легко вступает в реакцию с бромной или хлорной водой. Химические свойства золота позволяют определить его подлинность в домашних условиях. Так, водно-спиртовой раствор йода и йодид калия оставляют на металле 583 и 585 пробы темные пятна, которые трудно вывести. Только золото выше 750 пробы при чистой качественной лигатуре не вступает в реакцию с этими веществами.

Металл не магнитится и не имеет никакого запаха. При помощи этих свойств можно также определить подлинность ювелирных изделий.

Способы химической добычи золота

В основе промышленного способа извлечения металла из руд, называемого цианированием, лежит способность золота растворяться в концентрированной серной кислоте. При этом в химической реакции должны присутствовать такие окислители, как азотная и йодная кислота, а также диоксид марганца.

Ранее для извлечения золота из горной породы использовалось его свойство растворяться в ртути. В результате такой реакции получалась амальгама - легкоплавкий сплав. Эта смесь химических веществ легко отделялась от пустой породы, а затем ее сильно нагревали. Летучая ртуть испарялась, а золото оставалась на дне емкости. Правда, этот старинный способ в некоторых странах третьего мира используется до сих пор, несмотря на всю его вредоносность. Данный вариант добычи на сегодняшний день считается неэффективным, поскольку не позволяет полностью выделить благородный металл из горной породы.

Как распознать подделку

В природе встречаются минералы, внешне очень напоминающие золото. Так, одно из наиболее похожих на него природных веществ - сульфид железа, называемый пиритом. Он весьма примечателен по своим свойствам: при соударении кусков этого вещества высекаются искры. По последним данным ученых стало понятно, почему пирит так похож на золото. Оказывается, он не только имеет внешнее сходство с этим благородным металлом, но и содержит некоторое его количество. Еще этот рудный минерал отличается от золота кубическими кристаллами - им свойственны другие характеристики. Золото - это ковкий металл. При ударе по нему оно расплющится, в отличие от пирита, который просто рассыплется на мелкие кусочки.

Золото иногда путают с мусковитом и вермикулитом. Особенно сильно они похожи в виде вкраплений в различных минералах. Отличить настоящий драгоценный металл от двойников помогут физико-химические свойства золота.

Физические особенности

Практически каждый знает, что цвет этого благородного металла - ярко-желтый. На самом деле такой оттенок он приобретает после очищения от примесей. Желтое золото можно встретить только в банковских слитках и ювелирных изделиях. Причем в зависимости от количества примесей меняется и оттенок. Так, в золоте, используемом для изготовления ювелирных изделий, имеются примеси серебра, меди и других веществ. Иными словами, оно представляет собой сплавы нескольких металлов.

Цвет природного золота напрямую зависит от размера его частиц. Очень мелкие вкрапления в горных породах могут иметь и серо-зеленый оттенок. Иногда только опытный геолог может узнать в минералах месторождение золота. На 20 приисков приходится только один, где встречается желтое вещество.

Немаловажным физическим свойством металлов является их твердость. По этому показателю золото находится далеко не на первом месте. По 10-бальной шкале Мооса, характеризующей твердость вещества, этот благородный металл имеет всего 2,5-3 балла. Что же это означает? Физические свойства золота, главное из которых - мягкость, позволяют использовать его для создания изящных ювелирных изделий. При этом данный металл можно легко поцарапать. Многим известно, что в старые времена подлинность золотых монет проверяли на зуб. При этом на них должны были остаться вмятины.

Физико-химические свойства золота

Этот металл имеет достаточно высокую температуру правления. Она составляет 1063 º C. Кипит металл при 2947 º C. При расплавлении золото приобретает бледно-зеленый цвет. Все металлы, которые входят в сплавы с ним, понижают температуру его плавления. Пары золота имеют зеленовато-желтый оттенок. При нагревании этого металла и его сплавов свыше 1063 º C они начинают улетучиваться. Причем чем больше температура, тем выше летучесть.

Поразительно, как сильно влияют на сплавы золота различные примеси. Так, его летучесть значительно повышается при наличии цинка, мышьяка, теллура, сурьмы, ртути. Серебро или медь в сплаве с благородным металлом значительно повышают его твердость. При этом несколько теряются такие свойства, как тягучесть и ковкость.

Один из самых главных показателей золота - это его плотность. При температуре 20 º C она составляет 19,3 г/см 3 . Частицы золота в 2,5 раза тяжелее частиц серебра. Плотность природных самородков несколько выше, чем сплавов. Так, примеси серебра или меди снижают ее до показателей 18-18,5 г/см3. Для наглядности можно представить 1 кг этого драгоценного металла в виде:

  • куба, ребро которого составляет 37,3 мм;
  • шара с диаметром 46,2 мм;
  • половины обычного стакана золотого песка.

Все вышеперечисленные свойства этого металла человек научился использовать в своих целях. Промышленная добыча золота из горной породы стала возможной именно благодаря его высокой плотности.

Сплавы

Этот драгоценный металл обладает способностью хорошо соединяться с другими химическими элементами. При этом конечный продукт будет обладать различными физическими показателями. Ювелирное желтое золото - это чаще всего сплав нескольких металлов, в котором содержание рассматриваемого вещества иногда составляет менее 40%. Причем различные примеси и их удельный вес в его составе напрямую влияют на оттенок конечного продукта. Так, в продаже можно встретить несколько видов ювелирного золота:


Качество и стоимость грамма золота полностью зависят от его чистоты и наличия тех или иных примесей.

Система проб

Качество золота и его количество в сплавах контролируется государством. В странах СНГ общепринятой считается система проб ювелирных сплавов, существовавшая еще в СССР. Так, в продаже чаще всего встречаются изделия с такими пробами:

  • 375 - удельный вес золота в сплаве составляет 38%. В него входят медь и серебро. Золото этой пробы тускнеет на воздухе. Оно имеет желтый или красноватый оттенок.
  • 500 - содержание золота составляет 50,5%. В составе сплава присутствуют медь и серебро. Он отличается низкой литейностью.
  • 585 (583) - удельный вес золота 59%. В сплав входят такие металлы, как палладий, серебро, медь, никель. Он отличается прочностью, твердостью, устойчивостью к воздуху.
  • 750 - в сплаве 75,5 % золота. В его состав входят палладий, никель, платина, серебро, медь. Изделия из этого золота хорошо полируются, прочны и тверды. Они легко поддаются обработке. Цветовая гамма очень широка. Сплав может быть зеленым, ярко-желтым, розовым, красным.
  • 958 - содержит 96% чистого золота. Этот сплав используется редко, поскольку плохо полируется и не имеет требуемой насыщенности цвета.
  • 999 - чистое золото, которое чаще всего представлено банковскими слитками.

Отражающие особенности

Золото, свойства и применение которого обусловлены его химическим составом, легко полируется. Оно обладает значительной отражающей способностью. Очень тонкие листы золота способны пропускать солнечные лучи. Поразительно, но при этом они абсолютно не будут нагреваться, поскольку тепловая (инфракрасная) их часть отразится от таких пластин. Благодаря такому свойству золото нашло применение в строительстве. Его используют для тонирования стекол в странах с жарким климатом. Благодаря такому решению значительно экономится энергия, необходимая для кондиционирования помещений. Отражающие свойства золота используются даже в космонавтике. Его наносят на защитные шлемы и другие поверхности космического оборудования для отражения значительного потока инфракрасных лучей в космосе.

Способность распыляться

Где еще используют золото? Свойства металла давать частицы, которые соизмеримы с длиной световой волны, лежат в основе его способности распыляться. В воде рек содержится мельчайшая пыль золота, которую невозможно увидеть невооруженным взглядом. Способность этого металла распыляться позволяет ему рассеиваться по мебели, стенам, полу золотосплавочных лабораторий. По статистике, из-за истирания золотых монет, находящихся в ежегодном обращении, ранее терялось до 0,1% их веса.

Тягучесть (пластичность)

Это одна из самых главных особенностей, которые имеет золото. Свойства металла позволяют его измельчать, сдавливать, искривлять, сжимать. Благодаря пластичности золото может принимать различные формы без изломов. Из 1 г можно вытянуть тончайшую проволоку (нить), длина которой составит 2610 м. Диаметр ее будет всего 2*10-6 мм, что позволяет использовать нить в современной электронной индустрии с микрочипами. Предел прочности отожженного золота составляет 100-140 МПа.

Ковкость

Сложно сказать, какое основное свойство золота имеет для нас наибольшую важность, но можно утверждать однозначно, что ковкость - одно из главных. Благодаря ему этот металл можно превратить в тонкий лист. Так, из 1 г золота можно получить пластину тонкой фольги, площадь которой составит 1 кв. м. Это позволяет использовать его в различных отраслях деятельности человека. Золото - металл, который можно сделать полупрозрачным и очень тонким, но при этом он не потеряет своей красоты и блеска. Благодаря такому свойству стало возможно получение тонколистового (сусального) материала, которым покрывают купола церквей, отделывают интерьер помещений.

Электропроводимость

Использование этого свойства золота позволяет применять его в электронной промышленности. Этот металл обладает высокой электрической проводимостью. При этом он устойчив к окислению. Электропроводность золота по отношению к меди составляет 75%. Сопротивление при 0 º C - 2,065*10-8 Ом. Это основное свойство золота позволяет использовать его в производстве таких сложных электронных приборов, как мобильные телефоны, телевизоры, вычислительная техника, калькуляторы, компьютеры. Удельная теплопроводность благородного металла при 0 º C составляет 311, 48 Вт/(мК).

Еще это очень красивый, и достаточно загадочный металл благородного желтого цвета. Он имеет как материальную, так и историческую ценность.

«Золотая» история

Данная история начинается еще с древних времен, ведь именно этот материал дал начало новой эре - эре металлов. Люди тогда превозносили его за необычный «солнечный» цвет. Считалось, что обладать этим металлом могут только благородных кровей люди. Это было престижно, ведь золото всегда играло важную материальную роль. Его можно было обменять на что угодно, а женщины украшали им свои волосы и одежду. Помимо плюсов были и минусы. Золото - это богатство, а богатство часто приводило к волнениям и войнам. Желания обладать независимостью было сильнее гуманности, и гибли люди. Очень много людей.

Свойства золота

Золото, несмотря на свою элегантность и красоту, очень тяжелый металл. Он не подвергается практически никаким химическим воздействиям, чем и заслужил звание «благородный металл». Он очень мягкий и пластичный, поэтому количество разных видов изделий из золота постоянно растет, но излишняя хрупкость не позволяет использовать его в чистом виде - только с добавлением серебра или меди. Кстати говоря, от процентного количества этих материалов в изделии напрямую зависит их цвет. Хорошая теплопроводность позволяет также использовать золото в изготовлении различного вида приборов.

Добыча

Добыча золота - дело непростое, ведь независимо от того, что это самый популярный металл, он еще и низкоконцентрированный. То есть, на большое пространство приходится ничтожно маленькое его количество. Например, в Мировом океане очень много этой породы, но она настолько сильно раскидана по океанскому дну, что добыть его практически невозможно. То же самое касается и земной коры. Но попадаются и богатые месторождения. Главное, нужно знать, где искать. Виды добываемого золота также напрямую зависят от места добычи. В земле кусочки золота кристаллообразные, а те, что ближе к воде - округлые.

Во все времена золотодобыча была очень прибыльным делом, но, на самом деле его не так уж и много.

Этот металл, который покорил землю и стал одним из самых главных металлов, никогда не потеряет свою ценность. Люди приручили его. Научились смешивать и изменять, делать красивые вещи и обменивать на полезные. Он всегда останется богатым металлом и благородным.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Химические свойства.

Несмотря на то, что золото в периодической системе Д. И. Менделеева находится в одной группе с серебром и медью, его химические свойства гораздо ближе к химическим свойствам металлов платиновой группы. Электродный потенциал пары Au – Au (111) равен – 1,5 В. Вследствие такого высокого значения на золото не действуют разбавленные и концентрированные HCI, HNO, HSO. Однако в HCI оно растворяется в присутствии таких окислителей, как двуокись магния, хлористое железо и медь, а также под большим давлением и при высокой температуре в присутствии кислорода. Золото легко растворяется также в смеси HCI и HNO (царская водка). В химическом отношении золото - малоактивный металл. На воздухе оно не изменяется, даже при сильном нагревании. Золото легко растворяется в хлорной воде и в аэрируемых растворах цианидов щелочных металлов. Ртуть также растворяет золото, образуя амальгаму, которая при содержании более 15% золота становится твердой. Известны два ряда соединений золота, отвечающие степеням окисления +1 и +3. Так, золото образует два оксида – оксид золота, или закись золота, Au O и оксид золота, или окись золота, Au O. Более устойчивы соединения, в которых золото имеет степень окисления +3. Соединения золота легко восстанавливаются до металла. Восстановителями могут быть водород под большим давлением, многие металлы, стоящие в ряду напряжений до золота, перекись водорода, двух хлористое олово, сернокислое железо, треххлористый титан, окись свинца, двуокись марганца, перекиси щелочных и щелочноземельных металлов. Для восстановления золота используют также различные органические вещества: муравьиную и щавелевую кислоты, гидрохинон, гидразин, метол, ацетилен и др. Для золота характерна способность к образованию комплексов с кислородом и серосодержащими лигандами, аммиаком и аминами вследствие высокой энергии образования соответствующих ионов. Чаще всего встречаются соединения одновалентного и трехвалентного золота. Часто их рассматривают как сложные молекулы, состоящие из равного числа атомов Au (1) и Au (3). Трехвалентное золото – очень сильный окислитель, оно образует много устойчивых соединений. Золото соединяется с хлором, фтором, йодом, кислородом, серой, теллуром и селеном.

Физико-механические свойства.

Золото давно является объектом научных исследований и

относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Большие расхождения существуют в результате измерения температуры плавления золота – от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота  при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 – 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.

Общая характеристика золота.

Золото - ярко-жёлтый блестящий металл. Золото – один из самых малоактивных металлов, стандартный электродный потенциал его равен +1,68 В.Оно очень ковко и пластично; путём прокатки из него можно получить листочки толщиной менее 0.0002мм, а из 1 грамма золота можно вытянуть проволоку длиной 3.5км. Золото - прекрасный проводник тепла и электрического тока, уступающий в этом отношении только серебру и меди. Золото очень мягкий металл (и опять-таки не самый мягкий, свинец и олово, например, еще мягче). Чистое золото царапается ногтем. Мягкость всегда делала золото очень удобным для обработки материалом. Ввиду мягкости золото употребляется в сплавах, обычно с серебром или медью. Эти сплавы применяются для электрических контактов, для зубопротезирования и в ювелирном деле. Золото очень легко истирается, превращаясь в тончайшую пыль. Благодаря этому свойству оно рассеяно везде, и таким образом, широко распространено в природе. Золото очень ковко и тягуче, что, конечно, является результатом его мягкости. На воздухе оно не изменяется даже при высоких температурах, не растворяется в соляной, серной и азотных кислотах. Но в царской водке золото легко растворяется с получением комплексной золотохлористоводородной кислоты:

Au + HNO + 4HCl = H + NO + 2H O

Так же легко растворяется золото в хлорной воде, ртути и в аэрируемых (продуваемых воздухом) растворах цианидов щелочным металлов.

Золото в природе.

Золото встречается в природе почти исключительно в самородном состоянии, главным образом в виде мелких зёрен, вкраплённых в кварц или содержащихся в кварцевом песке. В небольших количествах золото встречается в сульфидных рудах железа, свинца и меди. Следы его открыты в морской воде. Крупные месторождения золота находятся в Южной Африке, на Аляске, в Канаде и Австралии.

Золото отделяется от песка и измельченной кварцевой породы промыванием водой, которая уносит частицы песка, как более лёгкие, или обработкой песка жидкостями, растворяющими золото. Чаще всего применяется раствор цианида натрия (NaCN), в котором золото растворяется в присутствии кислорода с образованием комплексных анионов - :

4Au + 8NaCN + O 2 + 2H 2 0 -> 4Na + 4NaOH

Из полученного раствора золото выделяют цинком:

2Na + Zn -> Na 2 + 2Au

Освобождённое золото обрабатывают для отделения от него цинка разбавленной серной кислотой, промывают и высушивают. Дальнейшая очистка золота от примесей (главным образом от серебра) производится обработкой его горячей концентрированной серной кислотой или путём электролиза.

Метод извлечения золота из руд с помощью растворов цианидов калия или натрия был разработан в 1843 году русским инженером П.Р.Багратионом. Этот метод, принадлежащий к гидрометаллургическим способам получения металлов, в настоящее время наиболее распространён в металлургии золота. Самородное золото, имеющее примеси серебра и меди, существенно отличается от искусственных сплавов с этими же металлами. Сплав имеет однородную структуру, которая образуется в результате затвердевания расплавленной смеси металлов. Самородный металл появляется в результате кристаллизации из водных растворов.

В чистом виде золото имеет красивый соломенно-желтый цвет с сильным металлическим блеском. В данном случае можно сказать что золото – самый желтый из всех металлов.

В природе золото в чистом виде не встречается, а металлы-примеси (прежде всего медь и серебро) придают ему различные цвета и оттенки – от бледно-желтого (даже зеленоватого) до ярко желто-красного. Примесь палладия окрашивает золото в белый цвет (“белое” золото).

Цвет золота также зависит от толщены куска металла и его агрегатного состояния. Так, очень тонкая золотая пластинка имеет на просвет зеленый цвет. Такого же цвета и расплавленное золото, а его пары – зеленовато-желтого. В депрессионном состоянии золото обычно рубинового или темно-фиолетового цвета.

говорить о его применении.

Иногда самородное золото бывает покрыто пленкой оксидов железа. В этом случае цвет его может быть самым заурядным – грязно-бурым, коричневым, а то и почти черным. При добыче такое золото очень трудно отличить от вмещающей пустой породы, и поэтому нужен весьма тщательный контроль, чтобы избежать потерь. О таком золоте говорят что оно “в рубашке”, которая может состоять не только из оксидов железа. В некоторых случаях это могут быть мельчайшие частицы пустой породы, вдавленные в поверхность золотины. Надо сказать, что такая “рубашка” не только мешает различать золото, но и затрудняет его обработку.

Золото хорошо поглощает рентгеновские лучи. Дробность атомной массы природного золота (196,9) говорит о том, что оно состоит из смеси различных изотопов. Как и положено “благородному” металлу, золото в химические реакции вступает очень не охотно, но с некоторыми элементами оно все-таки взаимодействует, в частности с галоидами (хлором, бромом, йодом), образуя соединения типа AuCl, AuCl 3 . Взаимодействует оно также с цианидами, ртутью и теллуром. Существуют соединения, полученные искусственным путем, в том числе и так называемое гремучее золото – Au(NH) 3 , (CH) 3, которое легко взрывается при ударе или просто при нагреве. В некоторых жидкостях, хотя и очень трудно, золото растворяется. Извлечение золота из руд, песков и концентратов, основанное на его растворении в цианидах, - один из основных процессов при его гидрометаллургической переработке.

Золото кристаллизуется в кубической системе. Форма кристаллов может быть удлиненной или октаэдрической. При затвердевании после плавки кристаллы золота выглядят неправильными многоугольниками. Чем медленнее идет охлаждение, тем больше размеры кристаллов.

В 1953 году Ф. Фриденсбург, исходя из предельной глубины разработки 3000м, определил, что земная кора содержит 4 470 000 т золота. В настоящее время золотые рудники ЮАР вплотную подошли к 4-километровой глубине. Результаты расчетов для этой глубины еще более впечатляющие.

Находки золота в метеоритах являются неопровержимым доказательством того, что золото распространено не только на Земле, но и на других космических телах.

Но золото встречается не только в горных породах. Весьма много его в морях и океанах, хотя концентрация его и общее количество не установлены.

Применение золота в науке и технике

Тысячелетиями золото использовалось для производства ювелирных украшений и монет, а применение золота для зубопротезирования известно еще древним египтянам. Применение золота в стекольной промышленности известно с конца XVII в. Золотую фольгу, а позднее гальванопокрытия золотом широко применяли для золочения куполов церковных храмов. Лишь последние 40 – 45 лет можно отнести к периоду чисто технического применения золота. Золото обладает уникальным комплексом свойств, которого не имеет ни какой другой металл. Оно обладает самой высокой стойкостью к воздействию агрессивных сред, по электро – и теплопроводности уступает лишь серебру и меди, ядро золота имеет большое сечение захвата нейтронов, способность золота к отражению инфракрасных лучей близка к 100%, в сплавах оно обладает каталитическими свойствами. Золото очень технологично, из него легко изготавливают сверхтонкую фольгу и микронную проволоку. Покрытия золотом легко наносят на металлы и керамику. Золото хорошо паяется и сваривается под давлением. Такая совокупность полезных свойств послужила причиной широкого использования золота в важнейших современных отраслях техники: электронике, технике связи, космической и авиационной технике, химии.

Следует отметить, что в электронике на 90% золото используют в виде покрытий. Электроника и связанные с ней отрасли машиностроения являются основными потребителями золота в технике. В этой области золото широко используют для соединения интегральных схем сваркой давлением или ультразвуковой сваркой, контактов штепсельных разъемов, в качестве тонких проволочных проводников, для пайки элементов транзисторов и других целей. В последнем случае особенно важно то, что золото образует легкоплавкие эвтектики с индием, галлием, кремнием и другими элементами, которые обладают проводимостью определенного типа. Помимо технологических усовершенствований в электронике, для ряда деталей и узлов вместо золота стали использовать палладий, покрытия оловом, сплавами олова со свинцом и сплавом 65% Sn + 35% Ni с золотым подслоем. Сплав олова с никелем обладает высокой износостойкостью, коррозионной стойкостью, приемлемой величиной контактного сопротивления и электропроводностью. Несмотря на то, что в настоящее время расход золота в электронике непрерывно возрастает, считается, что он мог быть на 30% выше, если бы не меры, направленные на экономию золота.

В микроэлектронике широко применяют пасты на основе на основе золота с различным электросопротивлением. Широкое использование золота и его сплавов для контактов слаботочной аппаратуры обусловлено его высокими электрическими и коррозионными свойствами. Серебро, платина и их сплавы при использовании в качестве контактов, коммутирующих микротоки при микронапряжениях, дают гораздо худшие результаты. Серебро быстро тускнеет в атмосфере, загрязненной сероводородом, а платина полимеризует органические соединения. Золото свободно от этих недостатков, и контакты из его сплавов обеспечивают высокую надежность и длительный срок службы. Золотые припои с низким давлением пара используют для пайки вакуумноплотных швов деталей электронных ламп, а также для пайки узлов в аэрокосмической промышленности.

В измерительной технике для контроля температуры и, особенно для измерений низких температур используют сплавы золота с кобальтом или хромом. В химической промышленности золото главным образом используют для плакирования стальных труб, предназначенных для транспортировки агрессивных веществ.

Золотые сплавы применяют в производстве часовых корпусов и перьев для авторучек. В медицине используют не только зубопротезные золотые сплавы, но и медицинские препараты, содержащие соли золота, для различных целей, например при лечении туберкулеза. Радиоактивное золото используют при лечении злокачественных опухолей. В научных исследованиях золото используют для захвата медленных нейтронов. С помощью радиоактивных изотопов золота изучают диффузионные процессы в металлах и сплавах.

Золото применяют для металлизации оконных стекол зданий. В жаркие летние месяцы через оконные стекла зданий проходит значительное количество инфракрасного излучения. В этих обстоятельствах тонкая пленка (0.13 мкм) отражает инфракрасное излучение и в помещении становится значительно прохладнее. Если через такое стекло пропустить ток, то оно обретет противотуманные свойства. Покрытые золотом смотровые стекла судов, электровозов и т.д. эффективны в любое время года.

План.

    Общая характеристика золота.

    Химические свойства.

    Физико-механические свойства.

    Золото в природе.

    Применение золота в науке и технике.

    Список используемой литературы.

Список используемой литературы.

1. Анюфриева Л.В. Занимательная химия: Книга для учащихся, учителей и родителей. Москва изд. «АСТ-ПРЕСС», 1994.

2. Манкевич В.А. Основы химии. Справочник. Санкт-Петербург,1990

3. Степин Б.Д Книга по химии для домашнего чтения. Москва: Химия, 1995.

4. Токарев Б.Н. Любознательным о химии. Москва изд. «Химия», 1978г.

5. Популярная библиотека химических элементов. Изд. «Наука» Москва 1973г.

6. Химия. Энциклопедия. Под редакцией В.Володина. Москва 2000г.

Рассказать друзьям