Форма звуковой волны. Акустические волны Акустические волны по форме

💖 Нравится? Поделись с друзьями ссылкой

акустические волны

Альтернативные описания

Физическое явление, вызываемое колебаниями частиц воздуха

Колебательное движение частиц упругой среды

Что передвигается по воздуху со скоростью 330м/сек?

То, что слышится, воспринимается слухом

Убийца тишины

Акустика, аудио

Волна со скоростью 330 м/с

Волна, докатившаяся до уха

Волны, воспринимаемые ушами

Воспринимается ухом

Все, что слышится

Гласный или согласный

Его меряют в децибелах

Его мы воспринимаем слухом

Его слышит ухо

Его смешивает микшер

Его улавливает ухо

Информация для ушей

Колебания воздуха

М. все что слышит ухо, что доходит до слуха. стар. мусор, каменный лом, сор. Звучать, звукнуть, издавать, производить гул, звук, звон. Эта рояль звучит особенно хорошо. Звукни в клепало. Вызвучала, отзвучала струна, прозвучала только, зазвучала было и замолкла, не дозвучала. Позвучала б еще. Призвучала она мне надоела. Звучанье ср. состояние по глаг. Звуковой, ко звуку относящийся. Звуковые дрожанья, волны. Звучный, зычный, громкий, гулкий, звонкий, шумно звучащий. Звучность ж. состояние звучного, либо свойство звучащего. Звукозаконие, звукознание, звукословие ср. акустика, наука о звуках, часть физики. Звукомер м. снаряд для измерения звуков или числа содроганий звучащего предмета. Звуконастроенье ср. лад, настрой звуков. Звукоподражание ср. действие того, кто подражает каким-либо звукам: сходство слова, речи, говора, голоса с каким-либо иным звуком. Гром, треск, свист, слова звукоподражательные. Звукосогласие ср. согласие, соответственость, взаимная стройность звуков

Могильщик немого кино

Объект изучения фонетики

Основа "З" в УЗИ

Отраженный эхом

Прибавь его, а то не слышно

Продукт труда динамиков

Проистекает из динамиков

Скрежет

То, что мы улавливаем ушами

То, что слышит ухо

То, что слышится

То, что улавливает ухо

Убийца тишины

Ухо его слышит

Членораздельный элемент речи

Что впервые появилось в фильме "Дон Жуан" (США, 1926)

Что записывает фонограф

Что извлекают из струны

Что пишет микрофон

Что слышит ухо

Что улавливают наши уши

Что усиливает мегафон

Шорох или рев

Шорох, треск или стук

Предмет изучения фонетики

Колебательное движение частиц упругой среды

То, что слышится, воспринимается слухом

Физическое явление, воспринимаемое слухом

Прибавьте его, а то не слышно

Что впервые появилось в фильме «Дон Жуан» (США, 1926)?

Что записывает фонограф?

Что извлекают из струны?

Объект изучения акустики

Что измеряется в децибелах?

Что изучает акустика?

Усиливается рупором

Шорох и рев

Что исследуют акустики?

Акустическая волна

Волна с частотой 1000 Герц

Нарушает тишину

То, что слышим

Волны для уха

Что пишет микрофон?

Что усиливается рупором?

Основа «З» в УЗИ

Что слышит ухо?

Что усиливает мегафон?

Волна, улавливаемая ухом

Что улавливают наши уши?

нее, чем продольную. На рассмотренном выше эффекте строятся простые преобразователи типов волн (рис.4.5).

Продольная волна

Рис.4.5. Преобразование продольной волны в поперечную при помощи призмы из плавленого кварца

Рассмотренный преобразователь является взаимным устройством, т.е. если сдвиговая волна падает на призму справа под углом 250 к внутренней грани, происходит преобразование сдвиговой волны в продольную. Внешние грани перпендикулярны входящему и выходящему лучам.

Преобразование типов волн возможно и при использовании эффекта полного отражения от границы раздела. При угле падения, равном 45 градусов, коэффициент отражения как продольной, так и сдвиговой волн равен 1. Наблюдается полное отражение.

Из выражений для коэффициентов отражения (4.19), (4.21) видно, что существует такой угол падения, при котором значения R l l и R t t

обращаются в нуль, т. е. соответствующей отраженной волны не будет.

Явление расщепления и явление полного отражения акустических волн широко используются в преобразователях типов волн радиоэлектронной аппаратуры, а также для создания акустических волноводов.

4.4. Поверхностные акустические волны

Поверхностные акустические волны широко используются в радиотехнике для создания таких устройств, как линии задержки и фильтры. Скорость распространения акустических волн существенно меньше скорости распространения электромагнитных волн той же частоты, соответственно длина акустической волны значительно меньше электромагнитной, поэтому все устройства получаются су-

щественно компактней. До сих пор мы рассматривали только продольные и сдвиговые акустические волны, распространяющиеся во всем пространстве материала. Поверхностные волны отличаются от пространственных тем, что вся их энергия сосредоточена вблизи границы раздела материалов с различными свойствами. Теория поверхностных волн впервые была предложена английским физиком Дж. У. Рэлеем в 1885 г. Он теоретически предсказал и доказал возможность распространения в тонком поверхностном слое твердого тела, граничащего с воздухом, поверхностных акустических волн, которые принято называть рэлеевскими волнами – R -волнами. В задаче Рэлея ограничимся постановкой задачи и ее конечными результатами. Имеется плоская граница вакуум – изотропная твердая среда. Граница раздела совпадает с плоскостью xoy , ось z направлена вглубь твер-

дой среды.

Вакуум x

Твердое тело

Рис.4.6. Образование поверхностной волны Рэлея на границе твердого тела с вакуумом

Исходными для решения задачи являются волновые уравнение для вектора смещения частиц среды твердого тела

2 u r r l + k l 2 u r r l = 0, (4.23)

2 u t + k t2 u t = 0.

При решении используется граничное условие, состоящее в том, что на границе с вакуумом напряжения должны отсутствовать.

T iz = 0

для i = x , y , z .

Решение ищется в виде плоских гармонических волн, бегущих вдоль оси x в твердом полупространстве. С учетом того, что энергия поверхностной волны сосредоточена вблизи границы твердого тела с вакуумом, амплитуда смещения частиц среды, возмущенной этой волной, должна экспоненциально убывать с ростом координаты z .

Рэлеевская волна представляет собой сложную акустическую волну, образованную совокупностью продольных и сдвиговых компонентов вектора смещения. Решение уравнений (4.23) для смещения частиц в поверхностной волне Рэлея получается в следующем виде:

u& x

u& z

− q z

2 q s

− s z

j (ω t− kR x)

+ (k R 2 + s 2 ) e

− q z

2 k R 2

− s z

j (ω t− kR x)

= −A

− (k R 2 + s 2 ) e

где параметры q = k R 2 − k l 2 и s = k R 2 − k t 2 зависят от волновых чисел:

k l =

k t =

k R =

V l ,V t ,V R – скорость распространения продольной, сдвиговой и

поверхностной волны в рассматриваемой среде. Из приведенных решений (4.24), (4.25) четко виден экспоненциальный закон убывания амплитуды смещений при удалении точки наблюдения от границы внутрь твердого тела (рис.4.7). Толщина локализации волны Рэлея составляет 1–2 длины волны λ R . На глубине λ R плотность энергии в

волне составляет примерно 5% плотности у поверхности.

Твердое тело V R

Рис.4.7. Зависимость амплитуды поверхностной волны вблизи границы раздела сред

Вследствие сдвига фазы колебаний нормальной компоненты смещения u z относительно продольной составляющей u x на чет-

верть периода (наличие множителя j у компоненты u z в формуле

(4.25)), движение частиц среды происходит по эллиптической траектории. Большая ось эллипса перпендикулярна поверхности твердого тела, а малая – параллельна направлению распространения волны.

Скорость распространения поверхностной волны Рэлея находится из решения дисперсионного уравнения

−8

3 − 2

стной волн. Это уравнение имеет действительный корень – корень Рэлея, который приближенно можно представить в следующем виде:

V R ≈

0,875 + 1,125 σ .

1 + σ

При изменении коэффициента Пуассона примерно σ≈ 0,05÷ 0,5

скорость поверхностной волны Рэлея V R

изменяется от

0,917 V t

до 0,958V t . Скорость V R зависит только от упругих свойств

твердого тела и не зависит от частоты, т.е. рэлеевская волна не обладает дисперсией. Скорость поверхностной волны существенно меньше скорости продольной волны и немного меньше скорости сдвиговой волны. Поскольку скорость волны Рэлея близка к скорости поперечной волны и большая часть ее упругой энергии в среде связана с компонентами поперечной, а не продольной волны, волна Рэлея во многих отношениях аналогична поперечной волне. Так, если шероховатость поверхности или воздушная нагрузка не оказывают преобладающего влияния, то затухание волны Рэлея в большинстве материалов того же порядка, что и затухание сдвиговой волны.

Кроме R -волн существует целый ряд других типов поверхностных акустических волн (ПАВ): поверхностные волны в твердом слое, лежащем на твердом упругом полупространстве (волны Лява), волны в пластинках (волны Лэмба), волны на искривленных твердых поверхностях, клиновые волны и т.д.

Впервые на поверхностные волны обратили внимание при анализе сейсмических колебаний. Наблюдатель обычно регистрирует 3 сигнала, приходящих от эпицентра земных толчков. Первым приходит сигнал, переносимый продольной акустической волной, как са-

АКУСТИЧЕСКИЕ ВОЛНЫ (звуковые волны), возмущения упругой материальной среды (газообразной, жидкой или твёрдой), распространяющиеся в пространстве. Возмущениями являются локальные отклонения плотности и давления в среде от равновесных значений, смещения частиц среды от положения равновесия. Эти изменения состояния среды, передающиеся от одних частиц вещества к другим, характеризуют звуковое поле. В акустических волнах осуществляется перенос энергии и количества движения без переноса самого вещества.

В газообразных и жидких средах, обладающих объёмной упругостью, могут распространяться только продольные акустические волны, в которых смещения частиц совпадают по направлению с распространением волны. Звуковое давление при этом является скалярной величиной. В неограниченных твёрдых средах, обладающих, помимо объёмной, также и сдвиговой упругостью, наряду с продольными могут распространяться и поперечные (сдвиговые) акустические волны; в них направления смещений частиц и распространения волны взаимно перпендикулярны. Аналогом звукового давления в твёрдых средах является тензор механического напряжения. При наличии границ в твёрдых телах возникают и другие типы акустических волн (смотри Упругие волны).

В соответствии с видом зависимости характеристик звукового поля от времени акустические волны могут иметь разную форму. Особое значение имеют гармонические акустические волны, в которых характеристики звукового поля изменяются во времени и в пространстве по синусоидальному закону (смотри Волны). Акустические волны любой формы можно представить в виде суммы (в предельном случае - интеграла) гармонических волн разных частот. В результате разложения волны на простые гармонические составляющие (смотри Звука анализ) получается спектр звука.

Диапазон частот акустических волн снизу практически не ограничен - в природе встречаются акустические волны с частотой, равной сотым и тысячным долям герца. Верхняя граница диапазона акустических волн обусловлена физической природой их взаимодействия с веществом: в газах длина волны должна быть больше длины свободного пробега молекул, а в жидкостях и твёрдых телах больше межмолекулярного или межатомного расстояния. На этом основании за верхнюю частотную границу в газах принята величина 10 9 Гц, в жидкостях 10 10 -10 11 Гц, в твёрдых телах 10 12 —10 13 Гц. В общем диапазоне акустические волны выделяют область собственно звука, воспринимаемого человеком на слух; условные границы этой области 16 Гц - 20 кГц (термин «звук» применяют часто к акустическим волнам во всём частотном диапазоне). Ниже лежит область инфразвука, выше - ультразвука (2·10 4 Гц - 10 9 Гц) и гиперзвука (10 9 Гц - 10 13 Гц). Гиперзвуковые волны в кристаллах иногда рассматривают с позиций квантовой теории, сопоставляя им фононы.

Распространение акустических волн характеризуется в первую очередь скоростью звука. При определённых условиях наблюдается дисперсия звука - зависимость скорости акустических волн от частоты. По мере распространения происходит постепенное затухание звука, т. е. уменьшение интенсивности акустических волн. Оно обусловлено в значительной степени поглощением звука, связанным с необратимым переходом энергии акустической волны в теплоту. Распространение акустических волн рассматривается методами волновой акустики либо геометрической акустики. При большой интенсивности акустических волн наблюдаются искажение их формы и другие нелинейные эффекты (смотри Нелинейная акустика).

Звуковые волны слышимого диапазона служат средством общения людей, а также самых разных представителей животного мира. Акустические волны используются для получения информации о свойствах и строении разных сред и о различных объектах. С их помощью изучаются естественные среды - атмосфера, земная кора, Мировой океан, выясняются особенности строения вещества на микроскопическом уровне. В практической деятельности человека акустические волны служат для обнаружения дефектов в изделиях, используются как один из методов медицинской диагностики, применяются для воздействия на вещество с целью изменения его свойств.

Лит.: Красильников В. А. Звуковые и ультразвуковые волны в воздухе, воде и твердых телах. 3-е изд. М., 1960; Исакович М. А. Общая акустика. М., 1973; Скучик Е. Основы акустики: В 2 т. М., 1976. И. П. Голямина.

Для характеристики акустических волн можно выделить несколько основных параметров, к которым относятся: скорость распространения С, м/c, колебательная скорость частиц средыV, м/c; давление в волне Р, Н/м 2 ; интенсивность волныJ, Вт/м 2 ; частотаf, Гц; длина волны, м.

Скорость распространения упругой волны в среде характеризует скорость распространения определенного состояния среды (например, зоны сжатия), зависит от характеристик этой среды и для плоских продольной, поперечной и поверхностных волн определяется из соотношений

;
;
, (2.41)

где С l , С t иС R – скорости продольной, поперечной и поверхностной волн;Е – модуль Юнга; γ – коэффициент Пуассона (для металлов γ = 0,3); ρ – плотность материала среды.

Скорость распространения зависит от свойств упругой среды. Например, в углеродистой стали (ρ = 7,8 . 10 3 кг/м 3)С l = 5 850 м/с,С t = 3 230 м/с, а в меди (ρ = 8,9 . 10 3 кг/м 3)С l = 4 700 м/с,С t = 2 260 м/с.

Колебательная скорость характеризует скорость распространения механического движения частиц в процессе их смещения относительно положения равновесия:

. (2.42)

Давление в волне Р определяется как

, (2.43)

где Z– акустический импеданс среды.

Акустический импеданс – это отношение комплексного звукового давления к объемной колебательной скорости . При распространении акустических волн в протяженных средах используется понятиеудельного акустического импеданса, равного отношению звукового давления к колебательной скорости. Акустический импеданс характеризует среду, в которой распространяется волна, и называетсяволновым сопротивлением среды.

Если среда имеет большое значение Z, то она называется «жесткой» (акустически твердой). В таких средах даже при высоких давлениях колебательные скорости малы. Среды, в которых даже при малых давлениях достигаются значительные колебательные скорости и смещения, получили названия «мягких» (податливых).

Интенсивность волны – количество энергии, перенесенное волной за 1 с через поперечное сечение площадью 1 м 2 , расположенное под углом φ.

Для плоской волны

Очень часто для оценки интенсивности волн используются не абсолютные величины, а относительные, например отношение величин на входе и выходе системы, причем обычно используется логарифм этого отношения.

2.4.3. Распространение акустических волн в среде

При распространении плоской акустической волны в среде в результате взаимодействия со средой происходит ее затухание, т. е. интенсивность, амплитуда колебаний, давление волны уменьшаются. Затухание определяется физико-механическими свойствами среды, типом волны, геометрическим расхождением лучей и происходит по экспоненциальному закону, например, для амплитуды можно записать

, (2.45)

где х – расстояние, пройденное волной;
– коэффициент затухания, м -1 ,иногда эту единицу записывают непер/м (Нп/м). Часто коэффициент затухания выражают в дБ/м.

Чем больше расстояние, тем сильнее ослабляется акустическая волна. Амплитуда колебаний и звуковое давление ультразвуковой волны снижаются в раз на каждую единицу длины путих, проходимого волной, а интенсивность как энергетическая единица – в
раз.

Величина, обратная коэффициенту затухания, показывает, на каком пути амплитуда волны уменьшается в е раз.

Коэффициент затухания складывается из коэффициентов поглощения δ П и рассеяния:

. (2.46)

При поглощении акустическая энергия переходит в тепловую, а при рассеянии уходит из направления распространения волны. Основными факторами, обусловливающими поглощение энергии, являются: вязкость, упругий гистерезис и теплопроводность.

Рассеяние происходит из-за наличия в среде неоднородностей (с отличным от среды волновым сопротивлением), размеры которых соизмеримы с длиной волны. Процесс рассеяния зависит от соотношения длины волны и среднего раз­мера неоднородности. Чем крупнее структура, тем больше рассеяние волны.

В газах и жидкостях затухание акустической волны определяется поглощением, рассеяние отсутствует. Коэффициент поглощения пропорционален квадрату частоты. В качестве характеристики поглощения звука в этих средах вводят параметр
. Рассеяние может отсутствовать и в однородных аморфных материалах типа пластмассы, стекла и т. п. материалах. Затухание ультразвуковых волн зависит от материала среды, в которой они распространяются. Например, в воздухе, в пластмассах и т. п. средах затухание велико. В воде затухание в тысячи раз меньше, в стали – незначительное .

В металлах, так как они имеют зернистую структуру, затухание акустических волн обусловлено рефракцией и рассеянием. Под рефракцией понимают непрерывное отклонение акустической волны от прямолинейного направления распространения.

Коэффициент рассеяния в металлах зависит от соотношения среднего размера неоднородностей (среднего размера зерна ) и длины волны и может определяться как

, (2.47)

где С 3 – коэффициент, не зависящий от величины зерна и анизотропии;F А – фактор анизотропии.

При >>λкоэффициент рассеяния пропорционаленf 4 , а общий коэффициент затухания

, (2.48)

где А и В – постоянные.

При
коэффициент рассеяния

. (2.49)

На значение коэффициента затухания оказывает влияние температура среды. Для оценки изменения δ при измерении температуры можно использовать формулу

, (2.50)

где Δt =t t 0 ; t – температура среды; δ 0 – коэффициент затухания при начальной температуреt 0; k δ – температурный коэффициент δ.

Если на пути распространения волны встречается среда с другими акустическим свойствами, то акустическая волна частично проходит во вторую среду, частично отражается от нее. При этом можетпроисходить трансформация типов волн.Трансформацией называется преобразование волн общего типа в волны другого типа, происходящие на границе раздела двух сред. При нормальном падении ультразвуковых волн (β = 0 0) трансформации не происходит. В общем случае границы двух твердых тел (рис. 2.12) возникают две (продольная и поперечная) отраженные и две преломленные волны.

При падении продольной волны образуются отраженная и преломленная продольные волны и в результате трансформации – отраженная и преломленная поперечные волны. Подобный процесс наблюдается и при падении поперечной волны. В жидкостях имеется только одна отраженная и одна преломленная волна.

Углы паденияβ , отраженияγ и преломленияα связаны между собой. Направления отраженных и преломленных (прошедших) волн определяются законом Снелиуса

, (2.51)

где C i – скорость падающей (продольной или поперечной) волны;C l 1 иC t 1 – скорости распространения продольных и поперечных волн в первой среде (I);C l 2 иC t 2 – скорости распространения продольных и поперечных волн во второй среде (II).

В акустике под углом падения ультразвуковой волны понимают угол, образованный нормалью к границе раздела, проходящего через точку прохождения луча, и направлением распространения пучка.

Для продольной волны при некотором значении угла падения β l 1 , называемогопервым критическим углом
, преломленная волна не проникает во вторую среду, а распространяется по поверхности. При дальнейшем увеличении угла падения преломленная поперечная волнаt 2 также начнет скользить по границе раздела двух сред. Наименьший угол падения, при котором это наблюдается, называетсявторым критическим углом
.

При падении поперечной волны из твердой среды на границу раздела при определенном угле падения
продольная отраженнаяl 1 волна сольется с поверхностью. Наименьший угол поперечной волны, при котором еще отсутствует отраженная продольная волна, называетсятретьим критическим углом
.

Значения критических углов определяются следующим образом. Используя выражение (2.50), можно записать:

;
;
. (2.52)

Свойства акустических волн широко используются при создании наклонных преобразователей для контроля изделий продольными и поперечными волнами (первой средой при этом является призма из оргстекла, а вторая – контролируемое изделие). При практическом использовании наклонных преобразователей необходимо знать значения критических углов. Например, при падении продольной волны l из оргстекла на границу контролируемого изделия из стали они имеют значения: первый критический угол
≈ 27 0 ; второй критический угол
≈ 55 … 56 0 ; третий критический угол для границы сталь–воздух
≈ 33,5…34 0 . В практике акустического контроля деталей подвижного состава применяются пьезоэлектрические преобразователи с углами падения (углами призмы) 0, 6, 8, 40, 50 0 .

Прохождение акустической волны из одной среды в другую характеризуется коэффициентом прозрачности D, а отражение – коэффициентом отраженияR, которые при падении волны по нормали к границе раздела определяются как

;
, (2.53)

где А 0 , А пр иА отр – амплитуды падающей, прошедшей и отраженной волн.

Эти коэффициенты можно определить и по другим параметрам : интенсивности J , давлениюР , колебательной скоростиV и др.:

;
, (2.54)

где Z 1 иZ 2 – удельные акустические сопротивления первой и второй среды.

Коэффициенты прозрачности и отражения определяются для каждого типа возникающих волн, и их значения зависят от соотношения акустических сопротивлений сред. Например, при Z 1 =Z 2 наблюдается полное прохождение ультразвука через границу раздела (R= 0;D= 1). ЕслиZ 1 >>Z 2 , то энергия падающей волны полностью отражается (R= 1;D= 0).

Явления отражения и прохождения акустической волны широко используются в неразрушающем ультразвуковом контроле различных изделий. Например, на способности ультразвуковых волн, излучаемых в контролируемый объект, отражаться от дефектов с последующей регистрацией эхосигналов основан эхометод акустического контроля. Явление прохождения ультразвуковой волны используется в теневом, зеркально-теневом и других методах акустического неразрушающего контроля.

Поверхностные акустические волны (ПАВ) находят широкое применение при разработке фильтров и линий задержек, применяемых в радиотехнических устрой­ствах. В последнее время ПАВ используются также при разработке измерительных преобразователей.

Известно несколько видов ПАВ, наиболее часто на практике применяют волны Релея. Смещение частиц твердого тела при распространении волны Релея в напра­влении оси Х иллюстрируется рис. 2-22, а . Как видно из рис. 2-22, а , волны распро­страняются вблизи границы твердого тела и затухают почти полностью на расстоя­нии z от поверхности, примерно равном длине волны l. Одной из основных причин возрастающего интереса к ПАВ является именно сосредоточенность энергии в тонком слое, так как благодаря этому к технологии изготовления ПАВ-элемента предъ­является лишь одно требование – тщательная обработка рабочей поверхности, по которой распространяется акустическая волна.

Для возбуждения ПАВ на поверхность пьезоэлемента наносятся гребенки встречно включенных электродов (рис. 2-22, б ), представляющие собой встречно-штыревой преобразователь (ВШП), имеющий шаг l 0 = l. При подключении напряжения к электродам ВШП под ними вследствие обратного пьезоэффекта происходят смещения частиц и возникает ПАВ, распространяющаяся в обе стороны. Если при этом длина волны совпадает с шагом ВШП, то вследствие суперпозиции колебаний, возникающих под каждой парой электродов, суммарная энергия ПАВ достигает максимума; если длина волны не совпадает с шагом ВШП, энергия ПАВ уменьшается и при определенном соотношении между l и l 0 волна за пределами ВШП может пол­ностью погаситься.

Для приема энергии ПАВ используется второй ВШП, также имеющий шаг, равный длине волны. На электродах приемного ВШП вследствие прямого пьезоэффекта возникают заряды и появляется напряжение. Линия задержки состоит из входного и выходного ВШП. В первом приближении оба ВШП можно рассматривать как локальные электроды, расположенные на расстоянии L, равном расстоянию между геометрическими центрами ВШП. Время задержки t равно времени прохож­дения акустической волны между ВШП, т. е.

t = L/u,

где u = – скорость распространения ПАВ; E ij – константа уп­ругости; r – плотность материала.

В кварце Y -среза скорость распростра­нения ПАВ равна u= 3159 м/с; таким образом, при L = 10 мм время задержки со­ставляет около 3 мкс. Длина волны l определяется скоростью распространения uичастотой возбуждения волн и составляет l= u/f. Современная технология обеспечивает возможности создания ВШП с ша­гом до l 0 = 10 мкм; таким образом, рабочие частоты ПАВ могут лежать в диапазо­не до 300 МГц.


ПАВ-структура может быть использована в качестве частотозадающего элемента автогенератора (рис. 2-22, в ); при этом, как следует из условия баланса фаз (фазовыми сдвигами в электрических цепях пренебрегаем), на длине L должно укладываться целое число волн. Фазочастотная характеристика линии задержки опре­деляется как j (w)= –wt. Значение эквивалентной добротности определяется формулой:

и составляет Q экв = pw 0 tL /(2l).

Длина L ограничена размерами ПАВ-структуры и затуханием энергии ПАВ и не превышает L = 500l; таким образом, добротность равна Q экв »10 3 .

Изменение времени задержки ПАВ-структуры под воздействием внешних фак­торов используется в измерительных преобразователях с частотнымвыходом. При изменении t относительное изменение частоты генератора составляет

Dw/w 0 =–Dt/t 0 .

Изменение времени задержки t = L/u определяется изменением длины L и фазовой скорости uи равно

Dt/t= DLIL–DЕ ij / (2E ij ) + Dr/(2r).

Изменение времени задержки может происходить при механических деформациях ПАВ-структуры, под воздействием температуры, при нагружении поверхности тонкими пленками (толщина пленки h" < 0,1 l), при изменении зазора d между поверхностью распространения ПАВ и токопроводящим экраном (d < 1). Соот­ветственно на базе ПАВ-структур могут быть созданы преобразователи для изме­рения механических величин (Dt/t–до 1%), температуры (Dt/t–до 1%), микроперемещений, для микровзвешивания и исследо­вания параметров тонких пленок (Dt/t–до 10%). При бесконтактной системе возбуждения ПАВ-преобразователи могут быть использованы также для измерения перемещения объекта, вызывающего пе­ремещение одного из ВШП и приводящего к изме­нению L .

Рассказать друзьям