Физические, химические свойства целлюлозы. Строение и свойства целлюлозы и ее спутников Клетчатка формула структурная

💖 Нравится? Поделись с друзьями ссылкой

Который состоит из остатков молекулы глюкозы и является необходимым элементом для образования оболочки всех растительных клеток. Молекулы ее имеют и содержат три гидроксильные группы. Благодаря этому, она проявляет свойства .

Физические свойства целлюлозы

Целлюлоза является белым твердым веществом, которое способно достигать температуры в 200оС и при этом не разрушаться. Но при повышении температуры до 275оС она начинает воспламеняться, что говорит о ее принадлежности к горючим веществам.

Если рассматривать целлюлозу под микроскопом, можно заметить, что ее структура образована волокнами, имеющими длину не более 20 мм. Волокна целлюлозы соединены множеством водородных связей, но при этом они не имеют ответвлений. Это придает целлюлозе наибольшую прочность и способность к сохранению эластичности.

Химические свойства целлюлозы

Остатки молекул глюкозы, составляющие целлюлозу, образуются при . Серная кислота и йод в процессе гидролиза окрашивают целлюлозу в синий цвет, а просто йод- в коричневый.

Существует множество реакций с целлюлозой, при которых происходит образование новых молекул. Реагируя с азотной кислотой, целлюлоза превращается в нитроцеллюлозу. А в процессе уксусной кислотой образуется триацетат целлюлозы.

Целлюлоза не растворяется в воде. Самым эффективным ее растворителем является ионная жидкость.

Как получают целлюлозу?

Древесина состоит на 50% из целлюлозы. Путем длительной варки щепы в растворе реагентов, а затем проведения очистки полученного раствора, можно получить ее в чистом виде.

Способы варки целлюлозы различаются по типу реагентов. Они могут быть кислыми и щелочными. Кислые реагенты содержат сернистую кислоту и применяются для получения целлюлозы из малосмолистых деревьев. Щелочные реагенты существуют двух типов: натронные и сульфатные. Благодаря натронным реагентам, целлюлозу можно получать из лиственных деревьев и однолетних растений. Но, используя этот реагент, целлюлоза получается очень дорогой, поэтому натронные реагенты используют редко или не используют совсем.

Самым распространенным способом получения целлюлозы является метод, основанный на сульфатных реагентах. Сульфат натрия - основа для белого щелока, который используется как реагент и пригоден для получения целлюлозы из любого растительного сырья.

Применение целлюлозы

Целлюлоза и ее эфиры используются для создания искусственных волокон, вискозного и ацетатного. Древесная целлюлоза используется для создания разнообразных вещей: бумаги, пластмассы, взрывных устройств, лаков и т. д.

Целлюлоза - это природный полимер глюкозы (а именно, остатки бетта-глюкозы) растительного происхождения с линейным строением молекул. По-другому целлюлоза еще называется клетчаткой. В данном полимере больше пятидесяти процентов углерода, который содержится в растениях. Целлюлоза занимает первое место среди соединений органического происхождения на нашей планете.

Чистая целлюлоза - это хлопчатобумажные волокна (до девяносто восьми процентов) либо льняные волокна (до восьмидесяти пяти процентов). До пятидесяти процентов целлюлозы содержит древесина, тридцать процентов целлюлозы в соломе. Много ее и в конопле.

Целлюлоза имеет белый цвет. Серная кислота окрашивает ее в синий оттенок, а йод - в коричневый. Целлюлоза твердая и волокнистая, без вкуса и запаха, не разрушается при температуре двести градусов Цельсия, но воспламеняется при температуре двести семьдесят пять градусов Цельсия (то есть является горючим веществом), а при нагревании до трехсот шестидесяти градусов Цельсия обугливается. Ее нельзя растворить в воде, но можно растворить в растворе аммиака с гидроксидом меди. Клетчатка является очень прочным и эластичным материалом.

Значение целлюлозы для живых организмов

Целлюлоза относится к полисахаридным углеводам.

В живом организме функции углеводов следующие:

  1. Функция структуры и опоры, так как углеводы принимают участие в построении опорных структур, а целлюлоза представляет собой главный компонент структуры стенок растительных клеток.
  2. Защитная функция, характерная для растений (колючки либо шипы). Такие образования на растениях состоят из стенок омертвевших растительных клеток.
  3. Пластическая функция (другое название анаболическая функция), так как углеводы являются компонентами сложных молекулярных структур.
  4. Функция обеспечения энергией, так как углеводы являются энергетическим источником для живых организмов.
  5. Запасающая функция, так как живые организмы запасают в своих тканях углеводы в качестве питательных веществ.
  6. Осмотическая функция, так как углеводы принимают участие в регулировании осмотического давления внутри живого организма (например, кровь содержит от ста миллиграмм до ста десяти миллиграмм глюкозы, а от концентрации этого углевода в крови и зависит кровяное осмотическое давление). Осмосный перенос доставляет питательные элементы в высоких стволах деревьев, так как капиллярный перенос в этом случае неэффективен.
  7. Функция рецепторов, так как некоторые углеводы находятся в составе воспринимающей части рецепторов клеток (молекул на клеточной поверхности либо молекул, которые растворены в клеточной цитоплазме). Рецептор особым образом реагирует на соединение с определенной химической молекулой, которая передает внешний сигнал, и передает этот сигнал в саму клетку.

Биологическая роль целлюлозы такова:

  1. Клетчатка - это главная структурная часть клеточной оболочки растений. Образуется в результате фотосинтеза. Целлюлоза растений является питанием травоядным животным (к примеру, жвачным), в их организме клетчатка расщепляется при помощи фермента целлюлаза. Он довольно редкий, поэтому в чистом виде целлюлоза в пищу человека не употребляется.
  2. Клетчатка в пище дает человеку чувство сытости и улучшает подвижность (перистальтику) его кишечника. Целлюлоза способна связывать жидкость (до ноля целых четырех десятых грамм жидкости на один грамм целлюлозы). В толстом кишечнике его метаболизируют бактерии. Клетчатка приваривается без участия кислорода (в организме есть только один анаэробный процесс). Итогом переваривания становится образование кишечных газов и летающих жирных кислот. Большее количество этих кислот всасывается кровью и применяется как энергия для организма. А то количество кислот, которое не усвоилось, и кишечные газы увеличивают объем кала и ускоряют его попадание в прямую кишку. Также энергия данных кислот применяется для увеличения количества полезной микрофлоры в толстом кишечнике и поддержки ее жизни там. Когда количество пищевых волокон в еде возрастает, то возрастает и объем полезных кишечных бактерий улучшается синтезирование витаминных веществ.
  3. Если добавлять в еду от тридцати до сорока пяти грамм отрубей (содержат клетчатку), сделанных из пшеницы, то каловые массы увеличиваются с семидесяти девяти грамм до двухсот двадцати восьми грамм в день, и срок их передвижения сокращается с пятидесяти восьми часов до сорока часов. Когда клетчатка добавляется в еду регулярно, то каловые массы становятся мягче, что помогает выполнять профилактику запора и геморроя.
  4. Когда в еде много клетчатки (например отруби), то организм как здорового человека, так и организм больного сахарным диабетом первого типа, становится более устойчив к глюкозе.
  5. Клетчатка как щетка убирает со стенок кишечника грязные налипания, впитывает токсичные вещества, забирает холестерин и удаляет все это из организма естественным путем. Доктора пришли к выводу, что люди, которые едят ржаной хлеб и отруби реже страдают раком прямого кишечника.

Больше всего клетчатки содержится в отрубях из пшеницы и ржи, в хлебе из грубо перемолотой муки, в хлебе из белков и отрубей, в сухих фруктах, морковке, крупах, свекле.

Области применения целлюлозы

Люди применяют целлюлозу уже долгое время. В первую очередь древесный материал шел как топливо и доски для строительства. Потом хлопок, лен и волокна конопли применяли для изготовления различных тканей. Впервые в промышленности химическую обработку древесного материала стали практиковать из-за развития производства бумажных изделий.

В настоящее время целлюлозу используют в различных промышленных областях. И именно для промышленные нужд получают ее в основном из древесного сырья. Целлюлозу применяют в производстве целлюлозно-бумажных изделий, в производстве различных тканей, в медицине, при производстве лаков, при изготовлении органического стекла и в иных областях промышленности.

Рассмотрим ее применение подробнее

Из целлюлозы и ее эфиров получают ацетатный шелк, изготавливают ненатуральные волокна, пленку из ацетилцеллюлозы, которая не горит. Изготавливают порох без дыма из пироксилина. Из целлюлозы делают плотную медицинскую пленку (коллодий) и целлюлоид (пластмассу) для игрушек, кинопленки и фотопленки. Делают нитки, канаты, вату, различные виды картона, строительный материал для судостроения и постройки домов. А еще получают глюкозу (для медицинских целей) и этиловый спорт. Целлюлозу применяют и в качестве сырья, и в качестве вещества для переработки химическим путем.

Много глюкозы нужно для изготовления бумаги. Бумага представляет собой тоненький волокнистый слой целлюлозы, которая была проклеена и спрессована на особом оборудовании, чтобы получить тонкую плотную гладкую поверхность бумажного изделия (чернила не должны растекаться по ней). Сначала для создания бумаги применялся только то материал растительного происхождения, из него нужные волокна выделяли механическим способом (рисовые стебли, хлопок, ветошь).

Но книгопечатание развивалось очень быстрыми темпами, стали выпускаться еще и газеты, поэтому произведенной таким способом бумаги стало недостаточно. Люди выяснили, что в древесине много клетчатки, поэтому к растительной массе, из которой делали бумагу, начали добавлять перемолотое древесное сырье. Но эта бумага была быстро рвущейся и желтеющей за очень короткое время, особенно при длительном нахождении на свету.

Поэтому стали разрабатываться разные методы обработки древесного материала химическими веществами, которые позволяют выделить из него очищенную от различных примесей целлюлозу.

Для получения целлюлозы щепу варят в растворе реагентов (кислоты либо щелочи) в течение длительного времени, потом очищают полученную жидкость. Так производится чистая целлюлоза.

К кислотным реагентам относится сернистая кислота, ее применяют для производства целлюлозы из древесины с малым количеством смолы.

К щелочным реагентам относятся:

  1. натронные реагенты обеспечивают получение целлюлозы из лиственных пород и однолетников (такая целлюлоза стоит довольно дорого);
  2. сульфатные реагенты, из которых наиболее распространен сульфат натрия (основа для производства белого щелока, а уже он применяется в качестве реагента для изготовления целлюлозы из любых растений).

После всех производственных этапов бумага идет на изготовление упаковочной, книжной и канцелярской продукции.

Из всего выше сказанного можно сделать вывод о том, что целлюлоза (клетчатка) имеют важное очищающее и оздоровительное значение для кишечника человека, а также используется во многих областях промышленности.

|
целлюлоза тяньши, целлюлоза
Целлюло́за (фр. cellulose от лат. cellula - «клетка, клетушка») - углевод, полимер с формулой (C6H10O5)n, белое твёрдое вещество, нерастворимое в воде, молекула имеет линейное (полимерное) строение, структурная единица - остаток β-глюкозы n. Полисахарид, главная составная часть клеточных оболочек всех высших растений.

  • 1 История
  • 2 Физические свойства
  • 3 Химические свойства
  • 4 Получение
  • 5 Применение
  • 6 Нахождение в природе
    • 6.1 Организация и функция в клеточных стенках
    • 6.2 Биосинтез
  • 7 Интересные факты
  • 8 Примечания
  • 9 См. также
  • 10 Ссылки

История

Целлюлоза была обнаружена и описана французским химиком Ансельмом Пайеном в 1838 году.

Физические свойства

Целлюлоза - белое твердое, стойкое вещество, не разрушается при нагревании (до 200 °C). Является горючим веществом, температура воспламенения 275 °С, температура самовоспламенения 420 °С (хлопковая целлюлоза). Растворима в сравнительно ограниченном числе растворителей - водных смесях комплексных соединениях гидроксидов переходных металлов (Сu, Cd, Ni) с NH3 и аминами, некоторых минеральных (H2SO4, Н3РО4) и органических (трифторуксусная) кислотах, аминоксидах, некоторых системах (например, натрийжелезовинный комплекс - аммиак -щелочь, ДМФА - N2O4)..

Целлюлоза представляет собой длинные нити, содержащие 300-10 000 остатков глюкозы, без боковых ответвлений. Эти нити соединены между собой множеством водородных связей, что придает целлюлозе большую механическую прочность, при сохранении эластичности.

Зарегистрирована в качестве пищевой добавки E460.

Химические свойства

Целлюлоза состоит из остатков молекул глюкозы, которая и образуется при гидролизе целлюлозы:

(C6H10O5)n + nH2O nC6H12O6

Серная кислота с йодом, благодаря гидролизу, окрашивают целлюлозу в синий цвет. Один же йод - только в коричневый.

При реакции с азотной кислотой образуется нитроцеллюлоза (тринитрат целлюлозы):

В процессе этерификации целлюлозы уксусной кислотой получается триацетат целлюлозы:

Целлюлозу крайне сложно растворить и подвергнуть дальнейшим химическим превращениям, однако в среде подходящего растворителя, например, в ионной жидкости, такой процесс можно осуществить эффективно.

При гетерогенном гидролизе параметр n снижается до некоторого постоянного значения (предельное значение степени полимеризации после гидролиза), что обусловлено завершением гидролиза аморфной фазы. При гидролизе хлопковой целлюлозы до предельного значения получают легкосыпучий белоснежный порошок - микрокристаллическую целлюлозу (степень кристалличности 70-85%; средняя длина кристаллитов 7 - 10 нм), при диспергировании которой в воде образуется тиксотропный гель. При ацетолизе целлюлоза превращается в восстанавливающий дисахарид целлобиозу (ф-ла I) и ее олигомергомологи.

Термическая деструкция целлюлозы начинается при 150 °С и приводит к выделению низкомолекулярных соединений (Н2, СН4, СО,спирты, карбоновые к-ты, карбонильные производные и др.) и продуктов более сложного строения. Направление и степень разложения определяются типом структурной модификации, степенями кристалличности и полимеризации. Выход одного из основных продуктов деструкции - левоглюкозана изменяется от 60-63 (хлопковая целлюлоза) до 4-5% по массе (вискозные волокна).

Процесс пиролиза целлюлозы в общем виде, по данным термического анализа, протекает следующим образом. Вначале в широком температурном диапазоне от 90 до 150 °С идет испарение физически связанной воды. Активный распад целлюлозы с потерей массы начинается при 280 °С и заканчивается примерно при 370 °С. Максимум скорости потери массы приходится на 330-335 °С (Д7Т-кривая). период активного распада теряется около 60-65 % массы навески. Дальнейшая потеря массы идет с меньшей скоростью, остаток при 500 °С составляет 15-20 % от навески целлюлозы (7Т-кривая). Активный распад протекает с поглощением тепла (ДГЛ-кривая). Эндотермический процесс переходит в экзотермический с максимумом выделения тепла при 365 °С, т. е. уже после основной потери массы. Экзотермика с максимумом при 365 °С связана с вторичными реакциями - с распадом первичных продуктов. Если термический анализ проводить в вакууме, т. е. обеспечить эвакуацию первичных продуктов, то экзотермический пик на ДТА-кривой исчезает.

Что интересно, при разной длительности нагревания целлюлозы, происходят разные химические процессы.

При облучении образца светом с длиной волны < 200 нм протекает фотохимическая деструкция целлюлозы, в результате которой снижается степень полимеризации, увеличиваются полидисперсность, содержание карбонильных и карбоксильных групп.

Получение

Промышленным методом целлюлозу получают методом варки щепы на целлюлозных заводах, входящих в промышленные комплексы (комбинаты). По типу применяемых реагентов различают следующие способы варки целлюлозы:

  • Кислые:
    • Сульфитный . Варочный раствор содержит сернистую кислоту и её соль, например гидросульфит натрия. Этот метод применяется для получения целлюлозы из малосмолистых пород древесины: ели, пихты.
    • азотнокислый. Метод состоит в обработке хлопковой целлюлозы 5-8%-ной HNO3 в течение 1-3 ч при температуре около 100 °С и атмосферном давлении с последующей промывкой и экстракцией разбавления раствором NaOH
  • Щелочные:
    • Натронный . Используется раствор гидроксида натрия. Натронным способом можно получать целлюлозу из лиственных пород древесины и однолетних растений. Преимущество данного метода - отсутствие неприятного запаха соединений серы, недостатки - высокая стоимость получаемой целлюлозы. Метод практически не используется.
    • Сульфатный . Наиболее распространенный метод на сегодняшний день. качестве реагента используют раствор, содержащий гидроксид и сульфид натрия, и называемый белым щёлоком. Своё название метод получил от сульфата натрия, из которого на целлюлозных комбинатах получают сульфид для белого щёлока. Метод пригоден для получения целлюлозы из любого вида растительного сырья. Недостатком его является выделения большого количества дурно пахнущих сернистых соединений: метилмеркаптана, диметилсульфида и др. в результате побочных реакций.

Получаемая после варки техническая целлюлоза содержит различные примеси: лигнин, гемицеллюлозы. Если целлюлоза предназначена для химической переработки (например, для получения искусственных волокон), то она подвергается облагораживанию - обработке холодным или горячим раствором щелочи для удаления гемицеллюлоз.

Для удаления остаточного лигнина и придания целлюлозе белизны проводится её отбелка. Традиционная для 20 века хлорная отбелка включала в себя две ступени:

  • обработка хлором - для разрушения макромолекул лигнина;
  • обработка щелочью - для экстракции образовавшихся продуктов разрушения лигнина.

С 1970-х годов в практику вошла также отбелка озоном. начале 1980-х годов появились сведения об образовании в процессе хлорной отбелки чрезвычайно опасных веществ - диоксинов. Это привело к необходимости замены хлора на другие реагенты. настоящее время технологии отбелки подразделяются на:

  • ECF (Elemental chlorine free) - без использования элементарного хлора, с заменой его на диоксид хлора.
  • TCF (Total chlorine free) - полностью бесхлорная отбелка. Используются кислород, озон, пероксид водорода и др.

Применение

Целлюлозу и её эфиры используют для получения искусственного волокна (вискозного, ацетатного, медно-аммиачного шёлка, искусственного меха). Хлопок, состоящий большей частью из целлюлозы (до 99,5 %), идёт на изготовление тканей.

Древесная целлюлоза используется для производства бумаги, пластмасс, кино- и фотоплёнок, лаков, бездымного пороха и т. д.

Нахождение в природе

Целлюлоза является одним из основных компонентов клеточных стенок растений, хотя содержание данного полимера в различных клетках растений или даже частях стенки одной клетки сильно варьирует. Так, например, клеточные стенки клеток эндосперма злаков содержат всего около 2 % целлюлозы, в то же время хлопковые волокна, окружающие семена хлопчатника, состоят из целлюлозы более чем на 90 %. Клеточные стенки в области кончика удлиненных клеток, характеризующихся полярным ростом (пыльцевая трубка, корневой волосок), практически не содержат целлюлозы и состоят в основном из пектинов, в то время как базальные части этих клеток содержат значительные количества целлюлозы. Кроме того, содержание целлюлозы в клеточной стенке изменяется в ходе онтогенеза, обычно вторичные клеточные стенки содержат больше целлюлозы, чем первичные.

Организация и функция в клеточных стенках

Отдельные макромолекулы целлюлозы включат от 2 до 25 тысяч остатков D-глюкозы. Целлюлоза в клеточных стенках организована в микрофибриллы, представляющие собой паракристаллические ансамбли из нескольких отдельных макромолекул (около 36) связанных между собой водородными связями и силами Ван-дер-Ваальса. Макромолекулы находящиеся в одной плоскости и связанные между собой водородными связями формируют лист в пределах микрофибриллы. Между собой листы макромолекул также связаны большим числом водородных связей. Хотя сами по себе водородные связи достаточно слабые, за счёт того, что их много микрофибриллы целлюлозы обладают высокой механической прочностью и устойчивостью к действию различных ферментов. Индивидуальные макромолекулы в микрофибрилле начинаются и заканчиваются в разных местах, поэтому длина микрофибриллы превышает длину отдельных макромолекул целлюлозы. Следует отметить, что макромолекулы в микрофибрилле ориентированы одинаково, то есть редуцирующие концы (концы со свободной, аномерной OH-группой при C1 атоме) расположены с одной стороны. Современные модели организации микрофибрилл целлюлозы предполагают, что в центральной области она имеет высокоорганизованную структуру, а к периферии расположение макромолекул становится более хаотичным.

Между собой микрофибриллы связаны сшивочными гликанами (гемицеллюлозы) и в меньшей степени пектинами. Целлюлозные микрофибриллы, связанные сшивочными гликанами, формируют трехмерную сеть погружённую в гелеобразный матрикс из пектинов и обеспечивающую высокую прочность клеточных стенок.

Во вторичных клеточных стенках микрофибриллы могут быть ассоциированы в пучки, которые называют макрофибриллами. Подобная организация дополнительно увеличивает прочность клеточной стенки.

Биосинтез

Образование макромолекул целлюлозы клеточных стенок высших растений катализирует мультисубъединичный мембранный целлюлозосинтазный комплекс, расположенный на конце удлиняющихся микрофибрилл. Полный комплекс целлюлозосинтазы состоит из каталитической, поровой и кристаллизационной субъединиц. Каталитическая субъединица целлюлозосинтазы кодируется мультигенным семейством CesA (cellulose synthase A), которое входит в суперсемейство Csl (cellulose synthase-like), включающее также гены CslA, CslF, CslH и CslC ответственные за синтез других полисахаридов.

При изучении поверхности плазмалеммы растительных клеток методом замораживания-скалывания в основании целлюлозных микрофибрилл можно наблюдать так называемые розетки или терминальные комплексы размером около 30 нм и состоящие из 6 субъединиц. Каждая такая субъединица розетки является в свою очередь суперкомплексом образованным из 6 целлюлозосинтаз. Таким образом, в результате работы подобной розетки формируется микрофибрилла, содержащая на поперечном срезе около 36 макромолекул целлюлозы. У некоторых водорослей суперкомплексы синтеза целлюлозы организованы линейно.

Интересно, что роль затравки для начала синтеза целлюлозы играет гликозилированный ситостерин. Непосредственным субстратом для синтеза целлюлозы является UDP-глюкоза. За образование UDP-глюкозы отвечает сахарозосинтаза, ассоциированная с целлюлозосинтазой и осуществляющая реакцию:

Сахароза + UDP UDP-глюкоза + D-фруктоза

Кроме того UDP-глюкоза, может образовываться из пула гексозофосфатов в результате работы УДФ-глюкозопирофосфорилазы:

Глюкозо-1-фосфат + UTP UDP-глюкоза + PPi

Направление синтеза микрофибрилл целлюлозы обеспечивается за счёт движения целлюлозосинтазных комплексов по микротрубочкам прилежащим со внутренней стороны к плазмалемме. У модельного растения, резуховидка Таля, обнаружен белок CSI1 отвечающий за закрепление и движение целлюлозосинтазных комплексов по кортикальным микротрубочкам.

У млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерий-симбионтов, которые расщепляют и помогают хозяевам усваивать этот полисахарид.

Примечания

  1. 1 2 Глинка Н.Л. Общая химия. - 22 изд., испр. - Ленинград: Химия, 1977. - 719 с.
  2. Ignatyev, Igor; Charlie Van Doorslaer, Pascal G.N. Mertens, Koen Binnemans, Dirk. E. de Vos (2011). «Synthesis of glucose esters from cellulose in ionic liquids». Holzforschung 66 (4): 417-425. DOI:10.1515/hf.2011.161.
  3. 1 2 ЦЕЛЛЮЛОЗА.
  4. 1 2 Пиролиз целлюлозы.

См. также

В Викисловаре есть статья «целлюлоза»
  • Список стран, производящих целлюлозу
  • Сульфатный процесс
  • Ацетилцеллюлоза
  • Ансельм Пайя
  • Айрлайд (нетканый материал из Целлюлозы)

Ссылки

  • статья «Целлюлоза» (Химическая энциклопедия)
  • (англ.) LSBU cellulose page
  • (англ.) Clear description of a cellulose assay method at the Cotton Fiber Biosciences unit of the USDA.
  • (англ.) Cellulose Ethanol Production - First commercial plant

Микрокристаллическая целлюлоза в технологии лекарственных средств

целлюлоза, целлюлоза в продуктах, целлюлоза википедия, целлюлоза материал, целлюлоза ру, целлюлоза тяньши, целлюлоза формула, целлюлоза хлопковая, целлюлоза эвкалипт, целлюлоза это

Целлюлоза Информацию О

Сложный углевод из группы полисахаридов, входящий в состав клеточной стенки растений, называется целлюлозой или клетчаткой. Вещество было обнаружено в 1838 году французским химиком Ансельмом Пайеном. Формула целлюлозы - (C 6 H 10 O 5) n .

Строение

Несмотря на общность признаков, целлюлоза отличается от другого растительного полисахарида - крахмала. Молекула целлюлозы - длинная исключительно неразветвлённая цепочка сахаридов. В отличие от крахмала, состоящего из остатков α-глюкозы она включает множество остатков β-глюкозы, связанных между собой.

За счёт плотного линейного строения молекулы образуют волокна.

Рис. 1. Строение молекулы целлюлозы.

Целлюлоза имеет большую степень полимеризации, чем крахмал.

Получение

Целлюлозу в условиях промышленности вываривают из древесины (щепы). Для этого применяют кислые или щелочные реагенты. Например, гидросульфит натрия, гидроксид натрия, щёлок.

В результате варки образуется целлюлоза с примесью органических соединений. Чтобы её очистить используют раствор щёлочи.

Физические свойства

Клетчатка - безвкусное твёрдое волокнистое вещество белого цвета. Целлюлоза плохо растворяется в воде и органических растворителях. Растворяется в реактиве Швейцера - аммиачном растворе гидроксида меди (II).

Основные физические свойства:

  • разрушается при 200°C;
  • горит при 275°С;
  • самовоспламеняется при 420°С;
  • плавится при 467°C.

В природе целлюлоза находится в растениях. Она образуется в процессе фотосинтеза и выполняет в растениях структурную функцию. Является пищевой добавкой Е460.

Рис. 2. Клеточная стенка растений.

Химические свойства

Благодаря наличию трёх гидроксильных групп в одном сахариде клетчатка проявляет свойства многоатомных спиртов и способна вступать в реакции этерификации с образованием сложных эфиров. При разложении без доступа кислорода разлагается на древесный уголь, воду и летучие органические вещества.

Основные химические свойства клетчатки представлены в таблице.

Реакция

Описание

Уравнение

Гидролиз

Протекает при нагревании в кислой среде с образованием глюкозы

(C 6 H 10 O 5) n + nH 2 O (t°, H 2 SO 4) → nC 6 H 12 O 6

С уксусным ангидридом

Образование триацетилцеллюлозы в присутствии серной и уксусной кислот

(C 6 H 10 O 5) n + 3nCH 3 COOH (H 2 SO 4) → (C 6 H 7 O 2 (OCOCH 3) 3)n + 3nH 2 O

Нитрование

С концентрированной азотной кислотой реагирует при обычной температуре. Образуется сложный эфир - тринитрат целлюлозы или пироксилин, используемый для изготовления бездымного пороха

(C 6 H 10 O 5) n + nHNO 3 (H 2 SO 4) → n

Происходит полное окисление до углекислого газа и воды

(C 6 H 10 O 5) n + 6nO 2 (t°) → 6nCO 2 + 5nH 2 O

Рис. 3. Пироксилин.

Целлюлозу главным образом используют для изготовления бумаги, а также для производства сложных эфиров, спиртов, глюкозы.

Что мы узнали?

Целлюлоза или клетчатка - полимер из класса углеводов, состоящий из остатков β-глюкозы. Входит в состав растительных клеточных стенок. Это белое безвкусное вещество, образующее волокна, плохо растворимые в воде и органических растворителях. Целлюлозу выделяют из древесины путём варки. Соединение вступает в реакции этерификации и гидролиза, способно разлагаться в отсутствии воздуха. При полном разложении образует воду и углекислый газ.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 263.

Целлюлоза – один из самых распространенных природных полисахаридов, главная составляющая часть и основной структурный материал клеточных стенок растений. Содержание целлюлозы в волокнах хлопковых семян 95-99.5%, в лубяных волокнах (лен, джут, рами) 60-85%, в тканях древесины (в зависимости от породы дерева, его возраста, условий произрастания) 30-55%, в зеленых листьях, траве, низших растениях 10-25%. Почти в индивидуальном состоянии целлюлоза находится в бактериях рода Acetobacter . Спутниками целлюлозы в клеточных стенках большинства растений являются другие структурные полисахариды, отличающиеся по строению и называемые гемицеллюлозами – ксилан, маннан, галактан, арабан и др. (см. раздел «Гемицеллюлозы»), а также вещества неуглеводного характера (лигнин – пространственный полимер ароматического строения, диоксид кремния, смолистые вещества и др.).

Целлюлоза определяет механическую прочность клеточной оболочки и растительной ткани в целом. Распределение и ориентация целлюлозных волокон по отношению к оси растительной клетки на примере древесины показаны на рис.1. Там же представлена субмикронная организация клеточной стенки.

Стенка зрелой клетки древесины, как правило, включает в себя первичную и вторичную оболочки (рис.1). Последняя содержит три слоя - внешний, средний и внутренний.

В первичной оболочке природные волокна целлюлозы расположены беспорядочно и образуют сетчатую структуру (дисперсную текстуру ). Целлюлозные волокна во вторичной оболочке ориентированы в основном параллельно друг другу, что обуславливает высокую прочность растительного материала на разрыв. Степень полимеризации и кристалличности целлюлозы во вторичной оболочке выше, чем в первичной.

В слое S 1 вторичной оболочки (рис.1, 3 ) направление волокон целлюлозы почти перпендикулярно оси клетки, в слое S 2 (рис.1, 4 ) они образуют с осью клетки острый (5-30) угол. Ориентация волокон в слое S 3 сильно варьирует и может различаться даже в рядом расположенных трахеидах. Так, у трахеид ели угол между преимущественной ориентацией целлюлозных волокон и осью клетки колеблется в пределах 30-60, а у волокон большинства лиственных пород – 50-80. Между слоями Р и S 1 , S 1 и S 2 , S 2 и S 3 наблюдаются переходные области (ламеллы) с иной микроориентацией волокон, чем в основных слоях вторичной оболочки.

Техническая целлюлоза – волокнистый полуфабрикат, получается очисткой растительных волокон от нецеллюлозных компонентов. Целлюлозу принято называть по виду исходного сырья (древесная, хлопковая ), методу выделения из древесины (сульфитная, сульфатная ), а также по назначению (вискозная, ацетатная и др. ).

Получение

1. Технология получения древесной целлюлозы включает следующие операции: удаление коры с древесины (окорка); получение древесной щепы; варка щепы (в промышленности варку ведут по сульфатному или сульфитному способу); сортирование; отбелка; сушка; резка.

Сульфитный способ. Еловую древесину обрабатывают водным раствором бисульфита кальция, магния, натрия или аммония, затем в течение 1,5-4 часов повышают температуру до 105-110С, варят при этой температуре в течение 1-2 часов. Далее повышают температуру до 135-150С и варят в течение 1-4 часов. При этом все нецеллюлозные компоненты древесины (главным образом лигнин и гемицеллюлозы) переходят в растворимое состояние, и остается обезлигниненная целлюлоза.

Сульфатный способ. Щепу любых пород древесины (а также тростник) обрабатывают варочным щелоком, представляющим собой водный раствор едкого натра и сульфида натрия (NaOH + Na 2 S). В течение 2-3 часов повышают температуру до 165-180С и варят при этой температуре в течение 1-4 часов. Переведенные в растворимое состояние нецеллюлозные компоненты удаляются из реакционной смеси, и остается очищенная от примесей целлюлоза.

2. Хлопковая целлюлоза получается из хлопкового линта. Технология получения включает механическую очистку, щелочную варку (в 1-4%-ном водном растворе NaOH при температуре 130-170С) и отбелку. Электронные микрофотографии волокон хлопковой целлюлозы приведены на рис.2.

3. Бактериальная целлюлоза синтезируется бактериями рода Acetobacter . Образующаяся бактериальная целлюлоза имеет высокую молекулярную массу и узкое молекулярно-массовое распределение.

Узкое молекулярно-массовое распределение объясняется следующим. Поскольку в бактериальную клетку углевод поступает равномерно, средняя длина образующихся целлюлозных волокон увеличивается во времени пропорционально. При этом заметного увеличения поперечных размеров микроволокон (микрофибрилл) не происходит. Средняя скорость роста волокон бактериальной целлюлозы составляет ~0.1 мкм/мин, что соответствует полимеризации 10 7 -10 8 глюкозных остатков в час на одну бактериальную клетку. Следовательно, в среднем в каждой бактериальной клетке к растущим концам нерастворимых целлюлозных волокон в секунду присоединяется 10 3 глюкопиранозных звеньев.

Микроволокна бактериальной целлюлозы растут с двух концов фибриллы в обе с одинаковой скоростью. Макромолекулярные цепи внутри микрофибрилл расположены антипараллельно. Для других видов целлюлоз такие данные не получены. Электронная микрофотография волокон бактериальной целлюлозы приведена на рис.3. Видно, что волокна имеют приблизительно одинаковую длину и площадь поперечного сечения.

Рассказать друзьям